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Church numerals allow us to represent numbers in pure lambda calculus. In this
short note we’ll see how to define addition, multiplication, and exponentiation on
Church numerals using a cute notational trick. As a bonus, we’ll see how to define
predecessor and fast growing functions.

1 addition, multiplication, and exponentiation

Church repesents a natural number n as a higher order function, which I’ll denote n. The
function n takes another function f and composes f with itself n times:

n f = f ◦ f · · · ◦ f︸ ︷︷ ︸
n times

= fn

We can convert a Church numeral n back to an ordinary nat by applying it to the ordinary
successor function S : N→N given by S n = n+ 1: then n S 0 gives us back an ordinary natural
number n because n S 0 is the n-fold application of the successor function to the number 0,
which just increments it n times.

The first few Church numerals are:

0 , λf.λz.z

1 , λf.λz.fz

2 , λf.λz.f(fz)

3 , λf.λz.f(f(fz))

Many descriptions of Church numerals will view them in that way: as a function that takes two
arguments f and z that computes f(f(. . . (fz) . . . )), but this point of view gets incredibly confus-
ing when you try to define arithmetic on them, particularly multiplication and exponentiation.
So think about n f = fn as performing n-fold function composition.

If will be helpful to introduce an alternative notation for function application:

xf ≡ f(x)

This may seem strange, but using this notation we can define the first few Church numerals as:

f0 , id

f1 , f

f2 , f ◦ f
f3 , f ◦ f ◦ f

Note that on the left hand side, we are really defining 3 as the function 3(f) , f ◦ f ◦ f.

The advantage of this notation is apparent when defining addition and multiplication on
Church numerals:

fn+m , fn ◦ fm fn·m , (fn)m
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Exponentiation of Church numerals is even better: our notation already makes nm do the right
thing:

nm ≡m(n) (already does the right thing!)

The proofs that this does arithmetic correctly look like a triviality when using our notation: if
[n] is the Church numeral corresponding to an ordinary natural number n ∈N, i.e., satisfying
f[n] = fn, where f[m] ≡ [m](f) according to our notation, and fn for ordinary natural number
n ∈N is n-fold function composition, then

f[n]+[m] = f[n] ◦ f[m] = fn ◦ fm = fn+m = f[n+m]

The proofs for multiplication and exponentiation are similar.

2 predecessor

Surprisingly, defining the predecessor on Church numerals is the most difficult. I think this
solution is due to Curry.

We define the function f : N×N→N×N:

f((a,b)) = (s(a),a)

If we start with (0, x) and keep applying f we get the following sequence:

(0, x)→ (1, 0)→ (2, 1)→ (3, 2)→ (4, 3)→ · · ·

So

fn((0, x))1 = n

fn((0, x))2 =

{
x if n = 0

n− 1 if n > 0

So we can define the predecessor function:

p = λn.fn(0, 0)

So that p(0) = 0 and p(n) = n− 1 for n > 0.

2.1 pairs

We made use of pairs to define the predecessor, so to use pure lambda calculus we need to
define pairs in terms of lambda. We represent a pair (a,b) as:

(a,b) = λf.f a b

We can extract the components by passing in the function f:

fst = λx.x (λa.λb.a)

snd = λx.x (λa.λb.b)
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2.2 disjoint union

Another way to define the predecessor is with disjoint unions. We take:

inl(a) = λf.λg.fa

inr(a) = λf.λg.ga

Then we can define:

f(inl(a)) = inr(a)

f(inr(a)) = inr(s(a))

We can do this pattern match on an inl/inr by calling it with the two branches as arguments:

f(x) = x (λa.inr(a)) (λa.inr(s(a)))

And we can define:

p(n) = fn inl(0) (λx.x) (λx.x)

3 fast growing functions

Given any function g : N→ N we can define a series of ever faster growing functions as follows:

f0(n) = g(n)

fk+1(n) = f
n
k (n)

We can define this function using Church numerals:

fk = (λf.λn.fn n)k g

If we take g = S the successor function, then,

f0(n) = n+ 1

f1(n) = 2n

f2(n) = 2
n ·n

The function A(n) = fn(n) grows pretty quickly. We can play the same game again, by putting
g = A, obtaining a sequence:

h0(n) = A(n)

hk+1(n) = h
n
k (n)

To get a feeling for how fast this grows, consider h1:

h1(n) = h
n
0 (n)

= A(A(A(. . . A(A(n)))))

= A(A(A(. . . A(fn(n)))))

= A(A(A(. . . ffn(n)(fn(n)))))
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An expression like h3(3) gives us a relatively short lambda term that will normalise to a huge
term. We might as well start with g(n) = nn since that’s even easier to write using Church
numerals:

g = λa.aa

A = λk.(λf.λn.fn n)k g k

h = λk.(λf.λn.fn n)k A k

3 = λf.λz.f(f(f z))

X = h 3

You can’t write down anything close to the number X even if you were to write a hundred
pages of towers of exponentials. Of course, we can continue this game, and define a sequence

g0 = λa.aa

g1 = λk.(λf.λn.fn n)k g0 k

g2 = λk.(λf.λn.fn n)k g1 k

. . .

Which can be generalised as:

f(g) = λk.(λf.λn.fn n)k g k

gn = fn(g0)

So we get an even more compact, yet much larger number with:

f = λg.λk.(λf.λn.fn n)k g k

Y = f3 (λa.aa) 3

Of course, you can easily define much faster growing functions. But here’s a challenge: what’s
the shortest lambda term that normalises, but takes more than the age of the universe to
normalise? Or: what’s the largest Church numeral you can write down in less than 30 symbols?

Please let me know of any mistakes. I haven’t checked for them :)

— Jules
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