THE PRODUCT OF GCD AND LCM

Jules Jacobs

October 9, 2022

This is the standard identity for the product of gcd and lcm:

$$
\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)=a b
$$

One might wonder whether it holds that $\operatorname{gcd}(a, b, c) \cdot \operatorname{lcm}(a, b, c)=a b c$. Unfortunately, it does not; consider $\mathrm{a}=\mathrm{b}=\mathrm{c}=2$. It does however hold that

$$
\begin{equation*}
\operatorname{gcd}(a, b, c) \cdot \operatorname{lcm}(a b, a c, b c)=a b c \tag{1}
\end{equation*}
$$

In fact, it also holds that

$$
\operatorname{gcd}(a b, a c, b c) \cdot \operatorname{lcm}(a, b, c)=a b c
$$

To see this, think of a number as a vector of its prime factorisation:

$$
2^{2} \cdot 3^{1} \cdot 7^{2}=(2,1,0,2,0,0, \cdots)
$$

On this representation, the gcd corresponds to taking the pointwise minimum, and the lcd the pointwise maximum:

$$
\begin{aligned}
& \operatorname{gcd}\left(\left(a_{1}, a_{2}, \cdots\right),\left(b_{1}, b_{2}, \cdots\right),\left(c_{1}, c_{2}, c_{3}, \cdots\right)\right)=\left(\min \left(a_{1}, b_{1}, c_{1}\right), \min \left(a_{2}, b_{2}, c_{2}\right), \cdots\right) \\
& \operatorname{lcm}\left(\left(a_{1}, a_{2}, \cdots\right),\left(b_{1}, b_{2}, \cdots\right),\left(c_{1}, c_{2}, c_{3}, \cdots\right)\right)=\left(\min \left(a_{1}, b_{1}, c_{1}\right), \max \left(a_{2}, b_{2}, c_{2}\right), \cdots\right)
\end{aligned}
$$

And the product corresponds to the pointwise sum:

$$
\left(a_{1}, a_{2}, \cdots\right) \cdot\left(b_{1}, b_{2}, \cdots\right) \cdot\left(c_{1}, c_{2}, c_{3}, \cdots\right)=\left(a_{1}+b_{1}+c_{1}, a_{2}+b_{2}+c_{2}, \cdots\right)
$$

Thus, in this representation, equation (1) translates to:

$$
\min \left(a_{i}, b_{i}, c_{i}\right)+\max \left(a_{i}+b_{i}, a_{i}+c_{i}, b_{i}+c_{i}\right)=a_{i}+b_{i}+c_{i} \quad \text { (for all i) }
$$

Now it is easy to see that the identity holds: fix i and assume without loss of generality that $a_{i} \leqslant b_{i} \leqslant c_{i}$, then the minimum reduces do a_{i} and the maximum to $b_{i}+c_{i}$.

We see that more generally, given n numbers instead of 3 numbers,

$$
\operatorname{gcd}(\mathrm{k}-\text { fold products }) \cdot \operatorname{lcm}((\mathrm{n}-\mathrm{k}) \text {-fold products })=\text { product }
$$

For $n=4$, this gives that the following values are all equal to abcd.

$$
\begin{array}{cl}
g c d(\emptyset) \cdot l \mathrm{~cm}(a b c d) & (k=0) \\
g c d(a, b, c, d) \cdot l \mathrm{~cm}(b c d, a c d, a b d, a b c) & (k=1) \\
\operatorname{gcd}(a b, a b, a d, b c, b d, c d) \cdot \operatorname{lcm}(a b, a b, a d, b c, b d, c d) & (k=2) \\
\operatorname{gcd}(b c d, a c d, a b d, a b c) \cdot \operatorname{lcm}(a, b, c, d) & (k=3) \\
\operatorname{gcd}(a b c d) \cdot \operatorname{lcm}(\emptyset) & (k=4)
\end{array}
$$

In fact, if we allow negative powers in the prime factorization, we can see that such identities hold over the positive rationals too, with gcd and lcm suitably extended.

