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Paradoxes of Probabilistic Programming
And How to Condition on Events of Measure Zero with Infinitesimal Probabilities

JULES JACOBS, Radboud University and Delft University of Technology, The Netherlands

Probabilistic programming languages allow programmers to write down conditional probability distributions

that represent statistical and machine learning models as programs that use observe statements. These

programs are run by accumulating likelihood at each observe statement, and using the likelihood to steer

random choices and weigh results with inference algorithms such as importance sampling or MCMC. We

argue that naive likelihood accumulation does not give desirable semantics and leads to paradoxes when an

observe statement is used to condition on a measure-zero event, particularly when the observe statement

is executed conditionally on random data. We show that the paradoxes disappear if we explicitly model

measure-zero events as a limit of positive measure events, and that we can execute these type of probabilistic

programs by accumulating infinitesimal probabilities rather than probability densities. Our extension improves

probabilistic programming languages as an executable notation for probability distributions by making it more

well-behaved and more expressive, by allowing the programmer to be explicit about which limit is intended

when conditioning on an event of measure zero.
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1 INTRODUCTION
Probabilistic programming languages such as Stan [Carpenter et al. 2017], Church [Goodman

et al. 2008], and Anglican [Wood et al. 2014] allow programmers to express probabilistic models in

statistics and machine learning in a structured way, and run these models with generic inference

algorithms such as importance sampling, Metropolis-Hastings, SMC, HMC. At its core, a probabilis-

tic programming language is a notation for probability distributions that looks much like normal

programming with calls to random number generators, but with an additional observe construct.

There are two views on probabilistic programming. The pragmatist says that probabilistic

programs are a convenient way to write down a likelihood function, and the purist says that

probabilistic programs are a notation for structured probabilistic models. The pragmatist interprets

an observe statement as “soft conditioning”, or imperatively multiplying the likelihood function

by some factor. The purist interprets an observe statement as true probabilistic conditioning in the

sense of conditional distributions. The pragmatist may also want to write a probabilistic program

to compute the likelihood function of a conditional distribution, but the pragmatist is not surprised
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58:2 Jules Jacobs

that there are non-sensical probabilistic programs that do not express any sensible statistical model.

After all, if one writes down an arbitrarily likelihood function then it will probably not correspond

to a sensible, structured, non-trivial statistical model. The pragmatist blames the programmer for

writing non-sensical programs, just as it would have been the fault of the programmer if they

had written down the same likelihood function manually. The purist, on the other hand, insists

that any probabilistic program corresponds to structured statistical model, and that each observe
statement in a probabilistic program has a probabilistic interpretation whose composition results

in the statistical model. We will show that the current state is not satisfactory for the purist, and

we will show how to make probabilistic programming languages satisfactory in this respect.

The difficulties with conditioning in probabilistic programs can be traced back to a foundational

issue in probability theory. When the event 𝐸 being conditioned on has nonzero probability, the

conditional distribution P(𝐴|𝐸) is defined as:

P(𝐴|𝐸) = P(𝐴 ∩ 𝐸)
P(𝐸)

However, this formula for conditional probability is undefined when P(𝐸) = 0, since then also

P(𝐴 ∩ 𝐸) = 0 and the fraction P(𝐴|𝐸) = 0
0 is undefined. In probabilistic programming we often

wish to condition on events 𝐸 with probability 0, such as “𝑥 = 3.4”, where 𝑥 is a continuous

random variable. There are several methods to condition on measure-zero events. For continuous

distributions that have probability density functions, we can replace the probabilities in the above

formula with probability densities, which are (usually) nonzero even if P(𝐸) is zero. For more

complicated situations, we can use the Radon–Nikodym derivative or disintegration or a limit

[Ackermann et al. 2017; Borgstrom et al. 2013; Chang and Pollard 1997; Dahlqvist and Kozen 2020;

Gordon et al. 2013; Shan and Ramsey 2017].

A general method for conditioning on measure-zero events is to define a sequence of events 𝐸𝜖
parameterized by a number 𝜖 > 0 such that 𝐸𝜖 in some sense converges to 𝐸 in the limit 𝜖 → 0,
but P(𝐸𝜖 ) > 0 for all 𝜖 > 0. We then define the conditional distribution to be the limit of P(𝐴|𝐸𝜖 ):

P(𝐴|𝐸) = lim
𝜖→0

P(𝐴 ∩ 𝐸𝜖 )
P(𝐸𝜖 )

In the book Probability Theory: The Logic of Science [Jaynes 2003], E.T. Jaynes explains that
conditioning on measure-zero events is inherently ambiguous, because it depends not just on 𝐸 but

also on the limiting operation 𝐸𝜖 we choose:

Yet although the sequences {𝐴𝜖 } and {𝐵𝜖 } tend to the same limit “𝑦 = 0”, the conditional
densities [P(𝑥 |𝐴𝜖 ) and P(𝑥 |𝐵𝜖 )] tend to different limits. As we see from this, merely

to specify “𝑦 = 0” without any qualifications is ambiguous; it tells us to pass to a

measure-zero limit, but does not tell us which of any number of limits is intended. [...]

Whenever we have a probability density on one space and we wish to generate from it

one on a subspace of measure zero, the only safe procedure is to pass to an explicitly

defined limit by a process like [𝐴𝜖 and 𝐵𝜖]. In general, the final result will and must

depend on which limiting operation was specified. This is extremely counter-intuitive

at first hearing; yet it becomes obvious when the reason for it is understood.

The other methods implicitly make the choice 𝐸𝜖 for us. Conditioning on events of measure-

zero using those methods can lead to paradoxes such as the Borel-Komolgorov paradox, even in

the simplest case when probability density functions exist. Paradoxes occur because seemingly

unimportant restatements of the problem, such as using a different parameterization for the

variables, can affect the choice of 𝐸𝜖 that those methods make, and thus change the value of the

limit. Consider the following probabilistic program:
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Paradoxes of Probabilistic Programming 58:3

h = rand(Normal(1.7, 0.5))
if rand(Bernoulli(0.5))

observe(Normal(h, 0.1), 2.0)
end

We first sample a value (say, a person’s height) from a prior normally distributed around 1.7 meters

and then with probability 0.5 we observe a measurement normally distributed around the height to

be 2.0. We ran this program in Anglican with importance sampling, and obtained the following

expectation values for ℎ: 1.812 1.814 1.823 1.813 1.806 (10000 samples each). Suppose that we had

measured the height in centimeters instead of meters:

h = rand(Normal(170, 50))
if rand(Bernoulli(0.5))

observe(Normal(h, 10), 200)
end

Wemight naively expect this program to produce roughly the same output as the previous program,

but multiplied by a factor of 100 to account for the conversion of meters to centimeters. Instead,

we get 170.1 170.4 171.5 170.2 169.4. This behavior happens because even though the units of the

program appear to be correct, the calculations that importance sampling does to estimate the

expectation value involve arithmetic with inconsistent units (in this case, adding a quantity with

units𝑚−1
to a quantity with neutral units). The issue is not particular to Anglican or importance

sampling, but due to the interaction of stochastic branching with way the likelihood is calculated

with probability densities; other algorithms [Paige et al. 2014; Tolpin et al. 2015] have the same

behavior. In fact, formal semantics based on likelihood accumulation, such as the commutative

semantics [Staton 2017] and the semantics based on on Quasi-Borel spaces [Heunen et al. 2017],

also perform arithmetic with inconsistent units for this example. Lexical likelihood weighting [Wu

et al. 2018] does give the right answer for this example
1
, but still exhibits unit anomalies for other

examples described in Section 3.

Unit errors in a programming language’s implementation or semantics may seem like a very

serious issue, but we do not believe that this is a show-stopper in practice, because practitioners can

always take the pragmatist view and avoid writing such programs. Although we consider this to be

an important foundational issue, it does not invalidate existing work on probabilistic programming.

It is known that conditionals can be problematic. Some inference algorithms, like SMC, will make

assumptions that exclude observe inside conditionals. For example, [van de Meent et al. 2018]

mentions the following when describing SMC:

Each breakpoint needs to occur at an expression that is evaluated in every execution

of a program. In particular, this means that breakpoints should not be associated with

expressions inside branches of if expressions. [...] An alternative design, which is often

used in practice, is to simply break at every observe and assert that each sample has

halted at the same point at run time.

If the design is used where breakpoints happen at every observe, then the assertion that breakpoints

should not be associated with expressions inside branches of if expressions will disallow using SMC

with programs that have observes inside conditionals. Languages such as Stan, that do not have

1
Many thanks to Alex Lew for pointing this out.
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or do not allow stochastic branching, also do not suffer from the preceding example. In section 3

we will show that the problem is not limited to conditionals; there are programs that do not have

conditionals but nevertheless have paradoxical behavior. Furthermore, we show that the standard

method of likelihood accumulation for implementing probabilistic programming languages can

sometimes obtain an answer that disagrees with the purist’s exact value for P(𝐴|𝐸) even if P(𝐸)
is nonzero, due to a confusion between probabilities and probability densities.

We identify three types paradoxes that affect probabilistic programming languages that allow

dynamically conditioning on events of measure-zero. These paradoxes are based on the idea that

it should not matter which parameter scale we use for variables. It shouldn’t matter whether we

use meters or centimeters to measure height, but it also shouldn’t matter whether we use energy

density or decibels to measure sound intensity. The change from centimeters to meters involves

a linear parameter transformation by 𝑐𝑚 = 0.01𝑚, whereas the change from energy density to

decibels involves a nonlinear parameter transformation decibels = log(energy density). We give

several example programs that show that the output of a probabilistic program can depend on the

parameter scale used when we condition on events of measure zero.

Following Jaynes’ advice, we extend the language with notation for explicitly choosing which
limit 𝐸𝜖 we mean in an observe statement. We give an implementation of likelihood accumulation

using infinitesimal probabilities instead of probability densities, and show that this does not suffer

from the three types of paradoxes. Infinitesimal probabilities give meaning to conditioning on

measure-zero events in terms of a limit of events of strictly positive measure. Since events of strictly

positive measure are unproblematic, paradoxes can no longer occur.

Furthermore, we add explicit language support for parameter transformations. This is only

soundly possible due to the introduction of infinitesimal probabilities. We show that introducing

a parameter transformation in an observe statement does not change the behavior of the proba-

bilistic program. That is, we show that in our language, observe(D,I) has the same behavior as

observe(D’,I’) where D’,I’ is D,I in a different parameter scale.

Our contributions are the following.

• We identify a problemwith existing probabilistic programming languages, in which likelihood

accumulation with probability densities can result in three different types of paradoxes when

conditioning on a measure-zero event. The three paradoxes violate the principle that the

output of a program should not depend on the parameter scale used (Section 3).

• We analyze the event that probabilistic programs with observe statements condition on,

taking the paradox-free discrete case as a guide, in order to determine what observe ought

to mean in the continuous case (Section 2).

• We propose a change to probabilistic programming languages to avoid the paradoxes of the

continuous measure-zero case, by changing the observe construct to condition on measure-

zero events 𝐸 as an explicit limit 𝜖 → 0 of 𝐸𝜖 (Sections 4 and 5), and

– a method for computing the limit by accumulating infinitesimal probabilities instead of

probability densities, which we use to implement the adjusted observe construct,

– a theorem that shows that infinitesimal probabilities correctly compute the limit of 𝐸𝜖 ,

ensuring that programs that use observe on measure-zero events are paradox free,

– a translation from the existing observe construct to our new observe construct, which
gives the same output if the original program was non-paradoxical,

– language support for parameter transformations, which we use to show that the meaning

of programs in our language is stable under parameter transformations,

– an implementation of our language as an embedded DSL in Julia [Jacobs 2020] (Section 6).
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2 ON THE EVENT THAT OBSERVE CONDITIONS ON
Different probabilistic programming languages have different variants of the observe statement.

Perhaps it’s simplest variant, observe(b) takes a boolean b and conditions on that boolean being

true. For instance, if we throw two dice and want to condition on the sum of the dice being 8, we

can use this probabilistic program, in pseudocode:

function twoDice()
x = rand(DiscreteUniform(1,6))
y = rand(DiscreteUniform(1,6))
observe(x + y == 8)
return x

end

The program twoDice represents the conditional distribution P(𝑥 |𝑥 + 𝑦 = 8) where 𝑥 and 𝑦 are

uniformly distributed numbers from 1 to 6. We wrap the program in a function and use the return

value to specify the variable x whose distribution we are interested in. Anglican has a defquery
construct analogous to the function definition that we use here.

Probabilistic programming languages allow us to sample from the distribution specified by

the probabilistic program and compute expectation values. The simplest method to implement

observe is rejection sampling [Goodman et al. 2008; von Neumann 1951]: we start a trial by running
the program from the beginning, drawing random samples with rand, and upon encountering

observe(x + y == 8) we test the condition, and if the condition is not satisfied we reject the

current trial and restart the program from the beginning hoping for better luck next time. If all

observes in a trial are satisfied, then we reach the return statement and obtain a sample for x. We

estimate expectation values by averaging multiple samples.

What makes probabilistic programs such an expressive notation for probability distributions is

that we have access to use the full power of a programming language, such as its control flow and

higher order functions [Heunen et al. 2017]. The following example generates two random dice

throws x and y, and a random boolean b, and uses an observe statement to condition on the sum of

the dice throws being 8 if b = true, with control flow:

x = rand(DiscreteUniform(1,6))
y = rand(DiscreteUniform(1,6))
b = rand(Bernoulli(0.5))
if b

observe(x + y == 8)
end
return x

This code expresses the conditional probability distribution P(𝑥 |𝐸) where 𝑥,𝑦, 𝑏 are distributed

according to the given distributions, and 𝐸 is the event (𝑏 = 𝑡𝑟𝑢𝑒 ∧ 𝑥 + 𝑦 = 8) ∨ (𝑏 = 𝑓 𝑎𝑙𝑠𝑒). That
is, a trial is successful if 𝑥 + 𝑦 = 8 or if 𝑏 = 𝑓 𝑎𝑙𝑠𝑒 .

In general, a probabilistic program conditions on the event that the tests of all observe statements

that are executed succeed. A bit more formally, we have an underlying probability space Ω and we

think of an element 𝜔 ∈ Ω as the “random seed” that determines the outcome of all rand calls (it
is sufficient to take Ω = R; a real number contains an infinite amount of information, sufficient

to determine the outcome of an arbitrary number of rand calls, even if those calls are sampling
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from continuous distributions). The execution trace of the program is completely determined by

the choice 𝜔 ∈ Ω. For some subset 𝐸 ⊂ Ω, the tests of all the observe calls that are executed in the

trace succeed. This is the event 𝐸 that a probabilistic program conditions on. Rejection sampling

gives an intuitive semantics for the observe statement:

For a boolean b, the statement observe(b) means that we only

continue with the current trial only if b = true. If b = false we

reject the current trial.

Unfortunately, rejection sampling can be highly inefficient when used to run a probabilistic

program. If we use 1000-sided dice instead of 6-sided dice, the probability that the sum 𝑥 + 𝑦 is

a particular fixed value is very small, so most trials will be rejected and it may take a long time

to obtain a successful sample. Probabilistic programming languages therefore have a construct

observe(D,x) that means observe(rand(D) == x), but can be handled by more efficient methods

such as importance sampling or Markov Chain Monte Carlo (MCMC). The previous example can

be written using this type of observe as follows:

x = rand(DiscreteUniform(1,6))
b = rand(Bernoulli(0.5))
if b

observe(DiscreteUniform(1,6), 8 - x)
end
return x

This relies on the fact that x + y == 8 is equivalent to y == 8 - x. The intuitive semantics of

observe(D,x) is as follows:

For discrete distributions D, the statement observe(D,x) means

that we sample from D and only continue with the current trial if

the sampled value is equal to x.

This variant of observe can be implemented more efficiently than rejection sampling. We keep

track of the weight of the current trial that represents the probability that the trial is still active (i.e.

the probability that it was not yet rejected). An observe(D,x) statement will multiply the weight
of the current trial by the probability P(D,x) that a sample from D is equal to x:

For discrete distributions D, the statement observe(D,x) gets

executed as weight *= P(D,x), where P(D,x) is the probability

of x in D.

The output of a trial of a probabilistic program is now weighted sample: a pair of random value x
and a weight. Weighted samples can be used to compute expectation values as weighted averages

(this is called importance sampling 2
). Estimating an expectation value using importance sampling

2
More advanced MCMC methods can use the weight to make intelligent choices for what to return from rand calls, whereas
importance sampling uses a random number generator for rand calls. We focus on importance sampling because this is the

simplest method beyond rejection sampling.
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will usually converge faster than rejection sampling, because importance sampling’s observe will

deterministically weigh the trial by the probability P(D,x) rather than randomly rejecting the trial

with probability 1 - P(D,x). If P(D,x) = 0.01 then rejection sampling would reject 99% of trials,

which is obviously very inefficient. It is important to note that multiplying weight *= P(D,x) is
the optimized implementation of observe, and we may still semantically think of it as rejecting the

trial if sample(D) != x.
If the distribution D is a continuous distribution, then the probability that a sample from D is

equal to any particular value x becomes zero, so rejection sampling will reject 100% of trials; it

becomes infinitely inefficient. This is not surprising, because on the probability theory side, the

event 𝐸 that we are now conditioning on has measure zero. Importance sampling, on the other

hand, continues to work in some cases, provided we replace probabilities with probability densities:

For continuous distributions D, the statement observe(D,x) gets

executed as weight *= pdf(D,x), where pdf(D,x) is the

probability density of x in D.

For instance, if we want to compute E[𝑥 |𝑥 + 𝑦 = 8] where 𝑥 and 𝑦 are distributed according to

𝑁𝑜𝑟𝑚𝑎𝑙 (2, 3) distributions, conditioned on their sum being 8, we can use the following probabilistic
program:

x = rand(Normal(2,3))
observe(Normal(2,3), 8 - x)
return x

This allows us to draw (weighted) samples from the distribution P(𝑥 |𝑥 + 𝑦 = 8) where 𝑥,𝑦 are

distributed according to 𝑁𝑜𝑟𝑚𝑎𝑙 (2, 3). Unfortunately, as we shall see in the next section, unlike

the discrete case, we do not in general have a probabilistic interpretation for observe(D,x) on

continuous distributions D when control flow is involved, and we can get paradoxical behavior

even if control flow is not involved.

3 THREE TYPES OF PARADOXES
We identify three types of paradoxes. The first two involve control flow where we either execute

observe on different variables in different control flow paths, or an altogether different number of

observes in different control flow paths. The third paradox is a variant of the Borel-Komolgorov

paradox and involves non-linear parameter transformations.

3.1 Paradox of Type 1: Different Variables Observed in Different Control Flow Paths
Consider the following probabilistic program:

h = rand(Normal(1.7, 0.5))
w = rand(Normal(70, 30))
if rand(Bernoulli(0.5))

observe(Normal(h, 0.1), 2.0)
else

observe(Normal(w, 5), 90)
end
bmi = w / h^2
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We sample a person’s height ℎ and weight𝑤 from a prior, and then we observe a measurement of

the height or weight depending on the outcome of a coin flip. Finally, we calculate the BMI, and

want to compute its average. If ℎ′
is the measurement sampled from Normal(ℎ, 0.1) and𝑤 ′

is the

measurement sampled from Normal(𝑤, 5) and 𝑏 is the boolean sampled from Bernoulli(0.5), then
the event that this program conditions on is (𝑏 = true ∧ ℎ′ = 2.0) ∨ (𝑏 = false ∧𝑤 ′ = 90). This
event has measure zero.

Just like the program in the introduction, this program exhibits surprising behavior when we

change ℎ from meters to centimeters: even after adjusting the formula bmi = 𝑤/(0.01 · ℎ)2 to

account for the change of units, the estimated expectation value for bmi still changes. Why does

this happen?

The call to observe(D,x) is implemented as multiplying the weight by the probability density

of x in D. Importance sampling runs the program many times, and calculates the estimate for

bmi as a weighted average. Thus the program above effectively gets translated as follows by the

implementation:

weight = 1
h = rand(Normal(1.7, 0.5))
w = rand(Normal(70, 30))
if rand(Bernoulli(0.5))

weight *= pdf(Normal(h, 0.1), 2.0)
else

weight *= pdf(Normal(w, 90), 5)
end
bmi = w / h^2

Where pdf (Normal(𝜇, 𝜎), 𝑥) is the probability density function of the normal distribution:

pdf (Normal(𝜇, 𝜎), 𝑥) = 1

𝜎
√
2𝜋

𝑒−
1
2
( 𝑥−𝜇

𝜎
)2

Importance sampling runs this program 𝑁 times, obtaining a sequence (bmi𝑘 ,weight𝑘 )𝑘∈{1,...,𝑁 } .
It estimates E[bmi ] with a weighted average:

E[bmi ] ≈
∑𝑁

𝑘=1 (weight𝑘 ) · (bmi𝑘 )∑𝑁
𝑘=1 (weight𝑘 )

The problem that causes this estimate to change if we change the units of h is that the formula

adds quantities with inconsistent units: some weight𝑘 have unit𝑚−1
(inverse length) and some

have unit 𝑘𝑔−1 (inverse mass).
It might be surprising that the weights have units at all, but consider that if we have a probability

distribution 𝐷 over values of unit 𝑈 , then the probability density function pdf (𝐷, 𝑥) has units
𝑈 −1

. The formula for pdf (Normal(𝜇, 𝜎), 𝑥) shows this in the factor of
1
𝜎
in front of the (unitless)

exponential, which has a unit because 𝜎 has a unit.

The call pdf(Normal(h, 0.1), 2.0) has units𝑚−1
and the call pdf(Normal(w, 90), 5) has

units 𝑘𝑔−1, and thus the variable weight has units𝑚−1
or 𝑘𝑔−1 depending on the outcome of the

coin flip. The weighted average estimate for E[bmi ] adds weights of different runs together, which
means that it adds values of unit𝑚−1

to values of unit 𝑘𝑔−1 . This manifests itself in the estimate

changing depending on whether we use𝑚 or 𝑐𝑚: computations that do arithmetic with inconsistent
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units may give different results depending on the units used. This calls into question whether this

estimate is meaningful, since the estimate depends on whether we measure a value in𝑚 or 𝑐𝑚, or

in 𝑘𝑔 or 𝑔, which arguably should not matter at all.

The reader might now object that conditionally executed observe statements are always wrong,

and probabilistic programs that use them should be rejected as erroneous. However, in the discrete

case there are no unit errors, because in that case the weight gets multiplied by a probability
rather than a probability density, and probabilities are unitless. Furthermore, in the preceding

section we have seen that conditionally executed observe statements have a rejection sampling

interpretation in the discrete case. This gives the programs a probabilistic meaning in terms of

conditional distributions, even if the discrete observe statements are inside conditionals. The event

𝐸 that is being conditioned on involves the boolean conditions of the control flow. Ideally we would

therefore not want to blame the programmer for using conditionals, but change the implementation

of observe on continuous variables so that the program is meaningful in the same way that the

analogous program on discrete variables is meaningful.

3.2 Paradox of Type 2: Different Number of Observes in Different Control Flow Paths
Let us analyze the program from the introduction:

h = rand(Normal(1.7, 0.5))
if rand(Bernoulli(0.5))

observe(Normal(h, 0.1), 2.0)
end
return h

This program exhibits unit anomalies for the same reason: some of the weight𝑘 have units𝑚−1

and some have no units, and adding those leads to the surprising behavior. Rather than taking this

behavior as a given, let us analyze what this program ought to do, if we reason by analogy to the

discrete case.

This program has the same structure as the dice program from section 2, the difference being

that we now use a normal distribution instead of a discrete uniform distribution. By analogy to that

discrete case, the event that is being conditioned on is (𝑏 = true ∧ ℎ′ = 2.0) ∨ (𝑏 = false), where ℎ′

is the measurement from Normal(ℎ, 0.1).
Surprisingly, this event does not have measure zero! The event (𝑏 = true ∨ ℎ′ = 2.0) has measure

zero, but the event 𝑏 = false has measure
1
2 , so the entire event has measure

1
2 . We can therefore

unambiguously apply the definition of conditional probability P(𝐴|𝐸) = P(𝐴∩𝐸)P(𝐸) . Our probability

space is Ω = R × R × bool, corresponding to ℎ ∼ Normal(1.7, 0.5), ℎ′ ∼ Normal(ℎ, 0.1), 𝑏 ∼
Bernoulli(0.5), and 𝐴 ⊆ Ω and 𝐸 = {(ℎ,ℎ′, 𝑏) | (𝑏 = true ∧ ℎ′ = 2.0) ∨ (𝑏 = false)} ⊆ 𝑋 . The

posterior P(𝐴|𝐸) =
𝑃 (𝐴∩𝐸)
𝑃 (𝐸) = 2 · P(𝐴 ∩ 𝐸) = 2 · P(𝐴 ∩ {(ℎ,ℎ′, 𝑏) |𝑏 = false}), so the marginal

posterior for ℎ is simply Normal(1.7, 0.5). That is, the whole if statement with the observe ought

to have no effect.

We can understand this intuitively in terms of rejection sampling: if the sampled boolean 𝑏 = true,
then the observe statement will reject the current trial with probability 1, because the probability

of sampling exactly 2.0 from a normal distribution is zero. Hence if 𝑏 = true then the trial will

almost surely get rejected, whereas if 𝑏 = false the trial will not get rejected. The trials where

𝑏 = true∧ℎ′ = 2.0 are negligibly rare, so even though the expectation of ℎ is affected in those trials,
they do not contribute to the final expectation value; only trials with 𝑏 = false do.
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As an aside: if we added an extra unconditional observe(Normal(h, 0.1), 1.9) to the program,

then the whole event will have measure zero, but nevertheless, trials with 𝑏 = false will dominate

over trials with 𝑏 = true, relatively speaking. In general, the control flow path with the least number

of continuous observes dominates. If there are multiple control flow paths with minimal number of

observes, but also control flow paths with a larger number of observes, we may have a paradox of

mixed type 1 & 2.

This reasoning would imply that the if statement and the observe statement are irrelevant; the

program ought to be equivalent to return rand(Normal(1.7, 0.5)). If this still seems strange,

consider the following discrete analogue:

h = rand(Binomial(10000, 0.5))
if rand(Bernoulli(0.5))

observe(binomial(10000, 0.9), h)
end
return h

That is, we first sample ℎ between 0 and 10000 according to a binomial distribution, and then with

probability 0.5 we observe that ℎ is equal to a number sampled from another binomial distribution

that gives a number between 0 and 10000. Since that binomial distribution is highly biased toward

numbers close to 10000, we might expect the average value ofℎ to lie significantly higher than 5000.
This is not the case. The rejection sampling interpretation tells us that most of the trials where the

coin flipped true, will be rejected, because the sample from Binomial(10000, 0.9) is almost never

equal to ℎ. Thus, although those samples have an average significantly above 5000, almost all of

the successful trials will be trials where the coin flipped false, and thus the expected value of ℎ will

lie very close to 5000.
Since we know that rejection sampling agrees with importance sampling in expectation, impor-

tance sampling will also compute an estimate for the expectation value of ℎ that lies very close

to 5000. The further we increase the number 10000, the stronger this effect becomes, because the

probability that the second sample is equal to ℎ further decreases. In the continuous case this

probability becomes 0, so the successful samples will almost surely be from trials where the coin

flipped to false. Therefore the average value of ℎ in the continuous case should indeed be 170,
unaffected by the if statement and the observe.

Another way to express this point, is that in the discrete case importance sampling, rejection

sampling, and the exact value given by the conditional expectation are all in agreement, even if

conditionals are involved. On the other hand, in the continuous case, importance sampling with

probability densities gives a different answer than rejection sampling and the exact value given by

the conditional expectation E[ℎ |𝐸] (the latter two are equal to each other; both 1.7).
The reader may insist that the semantics of the program is defined to be weight accumulation

with probability densities, that is, the semantics of the program is defined to correspond to

weight = 1
h = rand(Normal(1.7, 0.5))
if rand(Bernoulli(0.5))

weight *= pdf(Normal(h, 0.1), 2.0)
end
return h
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We can only appeal to external principles to argue against this, such as unit consistency, analogy

with the discrete case, the probabilistic interpretation of observe, and the rejection sampling

interpretation of observe, but the reader may choose to lay those principles aside and take this

implementation of observe as the semantics of observe.We do hope to eventually convince this reader

that a different implementation of observe that does abide by these principles, could be interesting.

Although our semantics will differ from the standard one, it will agree with lexicographic likelihood

weighting[Wu et al. 2018] for this example, which does not exhibit this particular paradox.

3.3 Paradox of Type 3: Non-Linear Parameter Transformations
Consider the problem of conditioning on 𝑥 = 𝑦 given 𝑥 ∼ Normal(10, 5) and 𝑦 ∼ Normal(15, 5),
and computing the expectation E[exp(𝑥)]. Written as a probabilistic program,

x = rand(Normal(10,5))
observe(Normal(15,5),x)
return exp(x)

In a physical situation, 𝑥,𝑦 might be values measured in decibels and exp(𝑥), exp(𝑦) may be

(relative) energy density. We could change parameters to 𝑎 = exp(𝑥) and 𝑏 = exp(𝑦). Then 𝑎 ∼
LogNormal(10, 5) and 𝑏 ∼ LogNormal(15, 5). Since the event 𝑥 = 𝑦 is the same as exp(𝑥) = exp(𝑦),
we might naively expect the program to be equivalent to:

a = rand(LogNormal(10,5))
observe(LogNormal(15,5),a)
return a

This is not the case. The two programs give different expectation values. Compared to type 1 &

2 paradoxes, this type 3 paradox shows that the subtlety is not restricted to programs that have

control flow or to distributions that are not continuous; the normal and lognormal distributions are

perfectly smooth.

This paradox is closely related to the Borel-Komolgorov paradox. Another variant of the original

Borel-Komolgorov paradox is directly expressible in Hakaru [Shan and Ramsey 2017], but not in

Anglican or Stan. Hakaru allows the programmer to condition a measure-zero condition 𝑓 (𝑥,𝑦) = 0
such as 𝑥 + 𝑦 − 8 = 0 directly without having to manually invert the relationship to 𝑦 = 8 − 𝑥 ,

and performs symbolic manipulation to do exact Bayesian inference. Hakaru allows a single such

observe at the very end of a program, which allows it to sidestep the previous paradoxes related to

control flow. The semantics of the single observe is defined by disintegration, which means that

the semantics of a Hakaru program depends on the form of 𝑓 . That is, if we take another function

𝑔 with the same solution set 𝑔(𝑥,𝑦) = 0 as 𝑓 , the output may change. The programmer can use this

mechanism to control which event they want to condition on. Our version of the paradox shows

that the subtlety of conditioning on measure-zero events is not restricted to programs that use that

type of disintegration.

4 AVOIDING EVENTS OF MEASURE ZEROWITH INTERVALS
Unit anomalies cannot occur with discrete distributions, because in the discrete case we only

deal with probabilities and not with probability densities. Recall that for discrete probability

distributions D, an observe statement observe(D,x) gets executed as weight *= P(D,x) where
P(D,x) is the probability of 𝑥 in the distribution 𝐷 . Probabilities have no units, so the weight
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variable stays unitless and the weighted average is always unit correct if the probabilistic program

is unit correct, even if observe statements get executed conditionally. Furthermore, in the discrete

case we have a probabilistic and rejection sampling interpretation of observe, and we may view

weight accumulation as an optimization to compute the same expectation values as rejection

sampling, but more efficiently. We wish to extend these good properties to the continuous case.

The reason that the discrete case causes no trouble is not due to D being discrete per se. The

reason it causes no trouble is that P(D,x) is a probability rather than a probability density. In the

continuous case the probability that rand(D) == x is zero, and that’s why it was necessary to use

probability densities. However, even in the continuous case, the probability that a sample from

D lies in some interval is generally nonzero. We shall therefore change the observe statement to

observe(D,I) where I is an interval, which conditions on the event rand(𝐷) ∈ 𝐼 . In the discrete

case we can allow I to be a singleton set, but in the continuous case we insist that I is an interval

of nonzero width.

We have the following rejection sampling interpretation for observe(D,I):

For continuous or discrete distributions D, the statement

observe(D,I) means that we sample from D and only continue

with the current trial if the sampled value lies in I.

And the following operational semantics for observe(D,I):

For continuous or discrete distributions D, the statement

observe(D,I) gets executed as weight *= P(D,I) where P(D,I)
is the probability that a value sampled from D lies in I.

Let 𝐼 = [𝑎, 𝑏] = {𝑥 ∈ R : 𝑎 ≤ 𝑥 ≤ 𝑏}. We can calculate P(rand(𝐷) ∈ [𝑎, 𝑏]) = cdf (𝐷,𝑏) −
cdf (𝐷, 𝑎) using the cumulative density function cdf (𝐷, 𝑥). This probability allows us to update the

weight of the trial. For instance, a call observe(Normal(2.0,0.1), [a,b]) can be executed as

weight *= normalcdf(2.0,0.1,b) - normalcdf(2.0,0.1,a) where 𝑛𝑜𝑟𝑚𝑎𝑙𝑐𝑑 𝑓 (𝜇, 𝜎, 𝑥) is the
cumulative density function for the normal distribution.

Notice how this change from probability densities to probabilities prevents unit anomalies: if we

change the variables𝑎, 𝑏 frommeters to centimeters, thenwemustwrite observe(Normal(200,10),
[a,b]), which gets executed as weight *= normalcdf(200,10,b) - normalcdf(200,10,a). We

introduced a factor 100 to convert 𝜇 and 𝜎 from meters to centimeters. This conversion ensures that

the result of the program remains unchanged, because normalcdf (𝑟 𝜇, 𝑟𝜎, 𝑟𝑥) = normalcdf (𝜇, 𝜎, 𝑥)
for all 𝑟 > 0. Hence the computed weight will be exactly the same whether we work with meters

or centimeters. On the other hand, for the probability density function it is not the case that

normalpdf (𝑟 𝜇, 𝑟𝜎, 𝑟𝑥) = normalpdf (𝜇, 𝜎, 𝑥). It is precisely this lack of invariance that causes unit

anomalies with probability densities.

4.1 Conditioning on Measure Zero Events as a Limit of Positive Measure Events
We can approximate the old observe(D,x) behavior with observe(D,I) by choosing 𝐼 = [𝑥 −
1
2𝑤, 𝑥 + 1

2𝑤] to be a very small interval of width w around x (taking w to be a small number, such as

w = 0.0001). This has two important advantages over observe(D,x):

(1) We no longer get unit anomalies or other paradoxes; if we change the units of x, we must

also change the units of w, which keeps the weight the same.
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(2) Unlike for observe(D,x), we have an unambiguous probabilistic and rejection sampling

interpretation of observe(D,I) for intervals of nonzero width, because the event being

conditioned on has nonzero measure.

However, the number w = 0.0001 is rather arbitrary. We would like to let𝑤 → 0 and recover the

functionality of observe(D,x) to condition on an exact value. With sufficiently small w we can get

arbitrarily close, but we can never recover its behavior exactly.

We therefore parameterize probabilistic programs by a dimensionless parameter eps. The BMI

example then becomes:

function bmi_example(eps)
h = rand(Normal(170, 50))
w = rand(Normal(70, 30))
if rand(Bernoulli(0.5))
observe(Normal(200, 10), (h, A*eps))

else
observe(Normal(90, 5), (w, B*eps))

end
return w / h^2

end

Since eps is dimensionless, we can not simply use eps as the width of the intervals: because h is in

𝑐𝑚, the width of the interval around h has to be in 𝑐𝑚, and the width of the interval around w has

to be in 𝑘𝑔. We are forced to introduce a constant A with units 𝑐𝑚 and a constant B with units 𝑘𝑔

that multiply eps in the widths of the intervals in the observes.

We could now run importance sampling on bmi_example(eps) for n=10000 trials for eps=0.1,
eps=0.01, eps=0.001 and so on, to see what value it converges to. If we run each of these inde-

pendently, then the rand calls will give different results, so there will be different randomness in

each of these, and it may be difficult to see the convergence. In order to address this, we can run

the program with different values of eps but with the same random seed for the random number

generator. This will make the outcomes of the rand calls the same regardless of the value of eps. In
fact, for a given random seed, the result of running importance sampling for a given number of

trials will be a deterministic function f(seed,eps) of the random seed and eps
If we assume that the program uses eps = 𝜖 only in the widths of the intervals, and not in the rest

of the program, then for a fixed seed, the function 𝑓 (seed, 𝜖) will be a function of 𝜖 of a specific

form, because importance sampling compute

𝑓 (seed, 𝜖) =
∑𝑁

𝑘=1 (weight𝑘 (𝜖)) · (𝑣𝑎𝑙𝑢𝑒𝑘 )∑𝑁
𝑘=1 (weight𝑘 (𝜖))

In this fraction, the𝑤𝑒𝑖𝑔ℎ𝑡𝑘 are a function of 𝜖 , but the 𝑣𝑎𝑙𝑢𝑒𝑘 are independent of 𝜖 if 𝜖 only occurs

inside the widths of intervals. Since the weight gets multiplied by 𝑃 (𝐷, 𝐼 ) on each observe(D,I),
the𝑤𝑒𝑖𝑔ℎ𝑡𝑘 (𝜖) is of a very specific form:

𝑤𝑒𝑖𝑔ℎ𝑡𝑘 (𝜖) = 𝐶 · 𝑃 (𝐷1, (𝑥1,𝑤1𝜖)) · · · 𝑃 (𝐷𝑛, (𝑥𝑛,𝑤𝑛𝜖))

where the constant 𝐶 contains all the probabilities accumulated from observes that did not involve

𝜖 , multiplied by a product of probabilities that did involve 𝜖 . Since 𝑃 (𝐷, (𝑥,𝑤𝜖)) = cdf (𝐷, 𝑥 +
1
2𝑤𝜖) + cdf (𝐷, 𝑥 − 1

2𝑤𝜖), we could, in principle determine the precise function 𝑤𝑒𝑖𝑔ℎ𝑡𝑘 (𝜖) and
hence 𝑓 (seed, 𝜖) for any given seed. We could then, in principle, compute the exact limit of this
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function as 𝜖 → 0, with a computer algebra system. This is, of course, impractical. The next section

shows that we can compute the limit efficiently by doing arithmetic with infinitesimal numbers.

Some semantics of probabilistic programming are also based on the notion of a limit 𝜖 → 0
[Gordon et al. 2013], and disintegration can also be expressed as a limit [Chang and Pollard 1997].

The difference here is that the dependence on 𝜖 and thus which limit we take is explicit in the

program text.

5 USING INFINITESIMAL NUMBERS TO HANDLE MEASURE-ZERO OBSERVATIONS
In order to recover the behavior of the old observe(D,x) using observe(D,I) with an interval

𝐼 = [𝑥 − 1
2𝑤, 𝑥 + 1

2𝑤], we want to take the limit𝑤 → 0, to make [𝑥 − 1
2𝑤, 𝑥 + 1

2𝑤] an infinitesimally

small interval around 𝑥 . We accomplish this using symbolic infinitesimal numbers
3
of the form 𝑟𝜖𝑛 ,

where 𝑟 ∈ R and 𝑛 ∈ Z. We allow 𝑛 < 0, so that 𝑟𝜖𝑛 can also represent “infinitely large” numbers

as well as “infinitesimally small” numbers. We will not make use of this possibility, but it makes

the definitions and proofs more general and more uniform.
4

Definition 5.1. An infinitesimal number is a pair (𝑟, 𝑛) ∈ R × Z, which we write as 𝑟𝜖𝑛 .5

The infinitesimals of the form 𝑟𝜖0 correspond to the real numbers.

Definition 5.2. Addition, subtraction, multiplication, and division on those infinitesimal numbers

are defined as follows:

𝑟𝜖𝑛 ± 𝑠𝜖𝑘 =


(𝑟 ± 𝑠)𝜖𝑛 if 𝑛 = 𝑘

𝑟𝜖𝑛 if 𝑛 < 𝑘

±𝑠𝜖𝑘 if 𝑛 > 𝑘

(𝑟𝜖𝑛) · (𝑠𝜖𝑘 ) = (𝑟 · 𝑠)𝜖𝑛+𝑘

(𝑟𝜖𝑛)/(𝑠𝜖𝑘 ) =
{
(𝑟/𝑠)𝜖𝑛−𝑘 if 𝑠 ≠ 0

undefined if 𝑠 = 0

Like ordinary division, division of infinitesimals is a partial function, which is undefined if the
denominator is exactly zero.

These rules may be intuitively understood by thinking of 𝜖 as a very small number; e.g. if 𝑛 < 𝑘

then 𝜖𝑘 will be negligible compared to 𝜖𝑛 , which is why we define 𝑟𝜖𝑛 + 𝑠𝜖𝑘 = 𝑟𝜖𝑛 in that case, and

keep only the lowest order term.

We represent intervals [𝑥 − 1
2𝑤, 𝑥 + 1

2𝑤] as midpoint-width pairs (𝑥,𝑤), where 𝑤 may be an

infinitesimal number.

Definition 5.3. If 𝐷 is a continuous distribution, we compute the probability 𝑃 (𝐷, (𝑥,𝑤)) that
𝑋 ∼ 𝐷 lies in the interval (𝑥,𝑤) as:

𝑃 (𝐷, (𝑥,𝑤)) =
{
cdf (𝐷, 𝑥 + 1

2𝑟 ) − cdf (𝐷, 𝑥 − 1
2𝑟 ) if𝑤 = 𝑟𝜖0 is not infinitesimal

pdf (𝐷, 𝑥) · 𝑟𝜖𝑛 if𝑤 = 𝑟𝜖𝑛 is infinitesimal (𝑛 > 0)
(1)

Where cdf (𝐷, 𝑥) and pdf (𝐷, 𝑥) are the cumulative and probability density functions, respectively.

3
In the philosophy literature there has been work on using non-standard analysis and other number systems to handle

probability 0 events, see [Pedersen 2014]and [Hofweber 2014] and references therein.

4
These infinitesimal numbers may be viewed as the leading terms of Laurent series. This bears some resemblance to the

dual numbers used in automatic differentiation, which represent the constant and linear term of the Taylor series. In our

case we only have the first nonzero term of the Laurent series, but the order of the term is allowed to vary.

5
The exponent 𝑛 of 𝜖 will play the same role as the number of densities 𝑑 in lexicographic likelihood weighting[Wu et al.

2018].
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Note that the two cases agree in the sense that if𝑤 is very small, then

cdf (𝐷, 𝑥 + 1

2
𝑤) − cdf (𝐷, 𝑥 − 1

2
𝑤) ≈ 𝑑

𝑑𝑥
cdf (𝐷, 𝑥) ·𝑤 = pdf (𝐷, 𝑥) ·𝑤

Definition 5.4. We say that 𝑓 (𝑥) is a “probability expression” in the variable 𝑥 if 𝑓 (𝑥) is defined
using the operations +,−, ·, /, constants, and 𝑃 (𝐷, (𝑠, 𝑟𝑥)) where 𝑟, 𝑠 ∈ R are constants, and 𝐷 is a

probability distribution with differentiable cdf.

We can view 𝑓 as a function from reals to reals (on the domain on which it is defined, that

is, excluding points where division by zero happens), or as a function from infinitesimals to

infinitesimals by re-interpreting the operations in infinitesimal arithmetic. The value of 𝑓 (𝜖) on
the symbolic infinitesimal 𝜖 tells us something about the limiting behavior of 𝑓 (𝑥) near zero:

Theorem 5.5. If 𝑓 (𝑥) is a probability expression, and if evaluation of 𝑓 (𝜖) is not undefined, and
𝑓 (𝜖) = 𝑟𝜖𝑛 , then lim𝑥→0

𝑓 (𝑥)
𝑥𝑛

= 𝑟 .

Note that the theorem only tells us that lim𝑥→0
𝑓 (𝑥)
𝑥𝑛

= 𝑟 if 𝑓 (𝜖) evaluates to 𝑟𝜖𝑛 with infinitesimal

arithmetic. If evaluating 𝑓 (𝜖) results in division by zero, then the theorem does not give any

information. In fact, the converse of the theorem does not hold: it may be that lim𝑥→0
𝑓 (𝑥)
𝑥𝑛

= 𝑟 but

evaluating 𝑓 (𝜖) results in division by zero.

Proof. By induction on the structure of the expression.

We know that evaluation of 𝑓 (𝜖) did not result in division by zero, and 𝑓 (𝜖) = 𝑟𝜖𝑛 . We need to

show that lim𝑥→0
𝑓 (𝑥)
𝑥𝑛

= 𝑟 .

• If 𝑓 (𝑥) is a constant 𝑟 , then we have 𝑓 (𝜖) = 𝑟𝜖0, and indeed lim𝑥→0
𝑓 (𝑥)
𝑥0 = lim𝑥→0 𝑓 (𝑥) = 𝑟 .

• If 𝑓 (𝑥) = 𝑃 (𝐷, (𝑠, 𝑟𝑥)). Now 𝑓 (𝜖) = pdf (𝐷, 𝑠) · 𝑟𝜖 , and

pdf (𝐷, 𝑠) · 𝑟 = 𝑟
𝑑

𝑑𝑥
[cdf (𝐷, 𝑥)]𝑥=𝑠

= 𝑟 lim
𝑥→0

cdf (𝐷, 𝑠 + 𝑥) − cdf (𝐷, 𝑠 − 𝑥)
2𝑥

= lim
𝑥 ′→0

cdf (𝐷, 𝑠 + 1
2𝑟𝑥

′) − cdf (𝐷, 𝑠 − 1
2𝑟𝑥

′)
𝑥 ′

= lim
𝑥 ′→0

𝑃 (𝐷, (𝑠, 𝑟𝑥 ′))
𝑥 ′

• If 𝑓 (𝑥) = 𝑔(𝑥) + ℎ(𝑥). Since evaluation of 𝑓 (𝜖) did not result in division by zero, neither

did evaluation of the subexpressions 𝑔(𝜖) and ℎ(𝜖), so 𝑔(𝜖) = 𝑟1𝜖
𝑛1

and ℎ(𝜖) = 𝑟2𝜖
𝑛2

for

some 𝑟1, 𝑟2, 𝑛1, 𝑛2. Therefore, by the induction hypothesis we have lim𝑥→0
𝑔 (𝑥)
𝑥𝑛1

= 𝑟1 and

lim𝑥→0
ℎ (𝑥)
𝑥𝑛2

= 𝑟2.

• Case 𝑛1 = 𝑛2: Now 𝑓 (𝜖) = (𝑟1 + 𝑟2)𝜖𝑛1
, and we have

lim
𝑥→0

𝑓 (𝑥)
𝑥𝑛1

= lim
𝑥→0

𝑔(𝑥) + ℎ(𝑥)
𝑥𝑛1

= lim
𝑥→0

𝑔(𝑥)
𝑥𝑛1

+ lim
𝑥→0

ℎ(𝑥)
𝑥𝑛1

= 𝑟1 + 𝑟2

• Case 𝑛1 < 𝑛2: Now 𝑓 (𝜖) = 𝑟1𝜖
𝑛1
, and since lim𝑥→0

ℎ (𝑒)
𝑥𝑛2

= 𝑟2 we have

0 = 0 · 𝑟2 = ( lim
𝑥→0

𝑥𝑛2−𝑛1 ) · ( lim
𝑥→0

ℎ(𝑥)
𝑥𝑛2

) = lim
𝑥→0

𝑥𝑛2−𝑛1ℎ(𝑥)
𝑥𝑛2

= lim
𝑥→0

ℎ(𝑥)
𝑥𝑛1

Therefore

lim
𝑥→0

𝑓 (𝑥)
𝑥𝑛1

= lim
𝑥→0

𝑔(𝑥) + ℎ(𝑥)
𝑥𝑛1

= lim
𝑥→0

𝑔(𝑥)
𝑥𝑛1

+ lim
𝑥→0

ℎ(𝑥)
𝑥𝑛1

= 𝑟1
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• Case 𝑛1 > 𝑛2. Analogous to the previous case.

• If 𝑓 (𝑥) = 𝑔(𝑥) − ℎ(𝑥). Analogous to the case for addition.

• If 𝑓 (𝑥) = 𝑔(𝑥) · ℎ(𝑥). Since evaluation of 𝑓 (𝜖) did not result in division by zero, neither

did evaluation of the subexpressions 𝑔(𝜖) and ℎ(𝜖), so 𝑔(𝜖) = 𝑟1𝜖
𝑛1

and ℎ(𝜖) = 𝑟2𝜖
𝑛2

for

some 𝑟1, 𝑟2, 𝑛1, 𝑛2. Therefore, by the induction hypothesis we have lim𝑥→0
𝑔 (𝑥)
𝑥𝑛1

= 𝑟1 and

lim𝑥→0
ℎ (𝑥)
𝑥𝑛2

= 𝑟2. Then

lim
𝑥→0

𝑓 (𝑥)
𝑥𝑛1+𝑛2

= lim
𝑥→0

𝑔(𝑥)
𝑥𝑛1

· ℎ(𝑥)
𝑥𝑛2

= ( lim
𝑥→0

𝑔(𝑥)
𝑥𝑛1

) · ( lim
𝑥→0

ℎ(𝑥)
𝑥𝑛2

) = 𝑟1 · 𝑟2

• If 𝑓 (𝑥) = 𝑔(𝑥)/ℎ(𝑥). Since evaluation of 𝑓 (𝜖) did not result in division by zero, neither

did evaluation of the subexpressions 𝑔(𝜖) and ℎ(𝜖), so 𝑔(𝜖) = 𝑟1𝜖
𝑛1

and ℎ(𝜖) = 𝑟2𝜖
𝑛2

for

some 𝑟1, 𝑟2, 𝑛1, 𝑛2. Therefore, by the induction hypothesis we have lim𝑥→0
𝑔 (𝑥)
𝑥𝑛1

= 𝑟1 and

lim𝑥→0
ℎ (𝑥)
𝑥𝑛2

= 𝑟2. By the assumption that no division by exactly zero occurred in the evalua-

tion of 𝑓 (𝜖), we have 𝑟2 ≠ 0. Then

lim
𝑥→0

𝑓 (𝑥)
𝑥𝑛1+𝑛2

= lim
𝑥→0

𝑔(𝑥)
𝑥𝑛1

/ℎ(𝑥)
𝑥𝑛2

= ( lim
𝑥→0

𝑔(𝑥)
𝑥𝑛1

)/( lim
𝑥→0

ℎ(𝑥)
𝑥𝑛2

) = 𝑟1/𝑟2

This finishes the proof. □

Some subtleties of limits and infinitesimals. In order to think about infinitesimals one must first

choose a function 𝑓 (𝑥) of which one wishes to learn something about the limit as 𝑥 → 0. Thinking
about infinitesimal arithmetic independent of such a function leads to confusion. Furthermore, the

result of evaluating 𝑓 (𝜖) depends not just on 𝑓 (𝑥) as a function on real numbers, but also on the

arithmetic expression used for computing 𝑓 . Consider the functions 𝑓 , 𝑔:

𝑓 (𝑥) = 5 · 𝑥2 + 0 · 𝑥
𝑔(𝑥) = 5 · 𝑥2

As functions on real numbers, 𝑓 = 𝑔, but nevertheless, with infinitesimal arithmetic their results

differ:

𝑓 (𝜖) = 0 · 𝜖1

𝑔(𝜖) = 5 · 𝜖2

Applying the theorem to these results gives the following limits for 𝑓 and 𝑔:

lim
𝑥→0

𝑓 (𝑥)
𝑥

= 0

lim
𝑥→0

𝑔(𝑥)
𝑥2

= 5

Both of these limits are correct, but this example shows that which limit the theorem says something

about may depend on how the function is computed. The limit for 𝑔 gives more information than

the limit for 𝑓 ; the limit for 𝑓 is conservative and doesn’t tell us as much as the limit for 𝑔 does.

Fortunately, this won’t be a problem for our use case: we intend to apply the theorem to the weighted

average of importance sampling, where the probabilities may be infinitesimal numbers. In this

case the power of 𝜖 of the numerator and denominator are always the same, so the final result will

always have power 𝜖0, and the theorem will then tell us about the limit lim𝑥→0
𝑓 (𝑥)
𝑥0 = lim𝑥→0 𝑓 (𝑥).

Another subtlety is that the converse of the theorem does not hold. It is possible that lim𝑥→0
𝑓 (𝑥)
𝑥𝑛

=

𝑟 , but evaluation of 𝑓 (𝜖) with infinitesimal arithmetic results in division by exactly zero. An example

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 58. Publication date: January 2021.



Paradoxes of Probabilistic Programming 58:17

is 𝑓 (𝑥) = 𝑥2

(𝑥+𝑥2)−𝑥 . We have lim𝑥→0 𝑓 (𝑥) = 1, but when evaluating 𝑓 (𝜖) = 𝜖2

(𝜖+𝜖2)−𝜖 , division by

zero occurs, because we have the evaluation sequence:

𝜖2

(𝜖 + 𝜖2) − 𝜖
→ 𝜖2

𝜖 − 𝜖
→ 𝜖2

0
→ undefined

If we used full Laurent series 𝑎𝑘𝜖
𝑘 + 𝑎𝑘+1𝜖𝑘+1 + . . . as our representation for infinitesimal numbers,

then we would potentially be able to compute more limits, even some of those where exact

cancellation happens in a denominator. Keeping only the first term is sufficient for our purposes, and

more efficient, because our infinitesimal numbers are pairs (𝑟, 𝑛) of a real (or floating point) number

𝑟 and an integer 𝑛, whereas Laurent series are infinite sequences of real numbers (𝑎𝑘 , 𝑎𝑘+1, . . . ).
The lemmas about computing limits have the form “For all 𝑎, 𝑏 ∈ R, if lim𝑥→0 𝑓 (𝑥) = 𝑎, and

lim𝑥→0 𝑔(𝑥) = 𝑏, and 𝑏 ≠ 0, then lim𝑥→0
𝑓 (𝑥)
𝑔 (𝑥) =

lim𝑥→0 𝑓 (𝑥)
lim𝑥→0 𝑔 (𝑥) ”. It is not true in general that

lim𝑥→0
𝑓 (𝑥)
𝑔 (𝑥) =

lim𝑥→0 𝑓 (𝑥)
lim𝑥→0 𝑔 (𝑥) . It is possible that the limit on the left hand side exists, even when

the limits on the right hand side fail to exist, or when the right hand side is
0
0 . Therefore, in order

to apply these theorems about limits, we must know that the right hand side is not undefined, prior

to applying such a lemma. In the proof above, the existence of the limits follows from the induction

hypothesis, and that the denominator is nonzero follows from the assumption that division by

zero does not occur. This is why we must assume that no division by exactly zero occurs in the

evaluation of 𝑓 (𝜖) with infinitesimal arithmetic, and it is also why the converse of the theorem

does not hold.

5.1 Intervals of Infinitesimal Width Make Paradoxes Disappear
The proposed observe construct allows finite width intervals observe(D,(a,w)) where w is an ex-

pression that returns a number, aswell as infinitesimal width intervals, as in observe(D,(a,w*eps))
where w is some expression that returns a number and eps is the symbolic infinitesimal 𝜖 . It is

possible to allow higher powers of eps to occur directly in the source program, and it is possible to

allow eps to occur in other places than in widths of intervals, but for conceptual simplicity we shall

assume it doesn’t, and that observe is always of one of those two forms. That is, we will assume that

eps is only used in order to translate exact conditioning observe(D,x) to observe(D,(x,w*eps)).
We translate the example from the introduction as follows:

h = rand(Normal(170, 50))
if rand(Bernoulli(0.5))

observe(Normal(200, 10), (h,w*eps))
end

Where the pair (h,w*eps) represents an interval of width w*eps centered around h, in order to

condition on the observation to be “exactly ℎ”.

Let us now investigate the meaning of this program according to the rejection sampling inter-

pretation of observe. Assuming the coin flip results in 𝑡𝑟𝑢𝑒 , we reject the trial if the sample from

𝑁𝑜𝑟𝑚𝑎𝑙 (200, 10) does not fall in the interval [ℎ − 1
2𝑤𝜖,ℎ + 1

2𝑤𝜖]. If the coin flip results in 𝑓 𝑎𝑙𝑠𝑒 ,

we always accept the trial. If we let 𝜖 → 0 then the probability of rejecting the trial goes to 1 if

the coin flips to 𝑡𝑟𝑢𝑒 , so almost all successful trials will be those where the coin flipped to 𝑓 𝑎𝑙𝑠𝑒 .

Therefore the expected value of ℎ converges to 170 as 𝜖 → 0, and expected value of running this

program should be 170.

We translate the BMI example as follows:
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h = rand(Normal(170, 50))
w = rand(Normal(70, 30))
if rand(Bernoulli(0.5))

observe(Normal(200, 10), (h, A*eps))
else

observe(Normal(90, 5), (w, B*eps))
end
bmi = w / h^2

Where A and B are constants with units 𝑐𝑚 and 𝑘𝑔, respectively. The units force us to introduce

these constants: since (h, A*eps) represents an interval centered at h (in cm), the width A*eps
must also be a quantity in 𝑐𝑚. If we change the units of h or w, we also need to change the units of

A or B. If we change the units of h and A from centimeters to meters, the numerical value of h and

A will both get multiplied by
1

100 . This additional factor for A*eps, which cannot be provided in

the original non-interval type of observe(D,x) statement, is what will make this program behave

consistently under change of units.

Both branches of the if statement contain observes with intervals of infinitesimal width, so with

rejection sampling both branches will be rejected with probability 1, regardless of the outcome of

the coin flip. We must therefore interpret the example with eps tending to 0, but not being exactly

0. If we chose A to be 1 meter, and B to be 1 kg, and change B to be 1000 kg, then the observe in the

else branch is 1000x more likely to succeed compared to before, because the width of the interval

goes from 1*eps to 1000*eps. If we made this change then most of the successful trials would

be trials where the coin flipped to false. Thus even in the infinitesimal case, the relative sizes
of the intervals matter a great deal. The relative sizes of the intervals are an essential part of the

probabilistic program, and omitting them will inevitably lead to unit anomalies, because changing

units also requires resizing the intervals by a corresponding amount (by 1000× in case we change

𝑤 from 𝑘𝑔 to 𝑔). If we do not resize the intervals, that changes the relative rejection rates of the

branches, or the relative weights of the trials, and thus the estimated expectation value E[𝑏𝑚𝑖].
As Jaynes notes, conditioning on measure-zero events is ambiguous; even though in the limit the

intervals (w,1*eps) and (w,1000*eps) both tend to the singleton set {w}, relative to the interval

(h,A*eps) it matters which of these limits is intended, and the final result will and must depend

on which limit was specified.

We translate the third example as follows:

x = rand(Normal(10,5))
observe(Normal(15,5), (x,eps))
return exp(x)

After a parameter transformation from 𝑥 to exp(𝑥) we get the following program:

exp_x = rand(LogNormal(10,5))
observe(LogNormal(15,5), (exp_x,exp_x*eps))
return exp_x

Note that the width of the interval is now exp_x*eps and not simply eps. In general, if we apply a

differentiable function 𝑓 to an interval of width 𝜖 around 𝑥 , we obtain an interval of width 𝑓 ′(𝑥)𝜖
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around 𝑓 (𝑥). If we take the exponential of an interval of small width 𝜖 around 𝑥 , we get an interval

of width exp(𝑥)𝜖 around exp(𝑥), not an interval of width 𝜖 around exp(𝑥). Both of these programs

should give the same estimate for the expectation value of exp(𝑥), so that infinitesimal width

intervals allow us to correctly express non-linear parameter transformations without running into

Borel-Komolgorov-type paradoxes.

5.2 On the Statistical Meaning of Conditioning With Intervals and “Soft Conditioning”
It is debatable whether conditioning on small but finite width intervals is preferable to conditioning

on measure zero events. Real measurement devices do not measure values to infinite precision.

If a measurement device displays 45.88, we might take that to mean an observation in the in-

terval [45.875, 45.885]. The measurement may in addition measure the true value x plus some

Normal(0,sigma) distributed noise rather than the true value x. In this case it might be appropriate

to use observe(Normal(x,sigma), (45.88, 0.01)). The finite precision of the device and its

noisy measurement are in principle two independent causes of uncertainty. The rejection sampling

interpretation of this program is that we first sample a value from Normal(x,sigma) and then

continue with the current trial if this lies in the interval [45.875, 45.885], which matches the two

sources of uncertainty. An argument for using infinitesimal width intervals is that observe on a

finite interval requires the evaluation of the distribution’s CDF, which is usually more complicated

and expensive to compute than the distribution’s PDF.

The term “soft conditioning” is sometimes used for observe(D,x) statements, particularly when

the distribution D is the normal distribution. This term can be interpreted as an alternative to the

rejection sampling interpretation in several ways:

(1) Rather than conditioning on x being exactly y, we instead condition on x being “roughly” y.
(2) The statement observe(D,x) means that we continue with the current trial with probability

pdf(D,x) and reject it otherwise.

We argue that neither of these interpretations is completely satisfactory. For (1) it is unclear what

the precise probabilistic meaning of conditioning on 𝑥 being “roughly” 𝑦 is. One possible precise

meaning of that statement is that we reject the trial if the difference |𝑥 −𝑦 | is too large, and continue
otherwise, but this is not what a statement such as observe(Normal(y,0.01), x) does. Rather, it

weighs trials where 𝑥 is close to𝑦 higher, and smoothly decreases the weight as the distance between

𝑥 and 𝑦 gets larger. It may seem that (2) makes this idea precise, but unfortunately pdf(D,x) is not

a probability but a probability density, and can even have units or be larger than 1. Furthermore,

the statement “continue with the current trial with probability pdf(D,x)” seems to have nothing

to do with the distribution D as a probability distribution, and instead seems to be a statement that

suggests that the statistical model is a biased coin flip rather than drawing a sample from D. Indeed,
under our rejection sampling interpretation, if one wants to have a program whose statistical model

is about coin flips, one can use the program observe(Bernoulli(f(x)), true). That program
does mean “flip a biased coin with heads probability f(x) and continue with the current trial if

the coin landed heads”. This makes sense for any function f(x) provided the function gives us a

probability in the range [0, 1]. If that function has a roughly bump-like shape around y, then this

will indeed in some sense condition on x being roughly y. The function 𝐶 exp((𝑥 −𝐴)2/𝐵) similar

to the PDF of the normal distribution does have a bump-like shape around 𝐴, so it is possible to use

that function for f, if one makes sure that 𝐵 and 𝐶 are such that it is unitless and everywhere less

than 1 (note that this normalization is not the same as the normalization that makes its integral

sum to 1).
We therefore suggest to stick with the rejection sampling interpretation of observe statements,

and suggest that a statistician who wants to do “soft conditioning” in the senses (1) and (2) writes
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their probabilistic program using observe(Bernoulli(f(x)), true) where f is a function of the

desired soft shape rather than observe(D,x) where the PDF of D has that shape.

5.3 Importance Sampling with Infinitesimal Probabilities
To do importance sampling for programs with infinitesimal width intervals we need to change

almost nothing. We execute a call observe(D,I) as weight *= P(D,I) where P(D,I) has been
defined in (1). Since P(D,I) returns an infinitesimal number if the width of I is infinitesimal,

the computed weight variable will now contain a symbolic infinitesimal number 𝑟𝜖𝑛 (where 𝑛 is

allowed to be 0), rather than a real number. It will accumulate the product of some number of

ordinary probabilities (for observe on discrete distributions or continuous distributions with an

interval of finite width) and a number of infinitesimal probabilities (for observe on continuous

distributions with intervals of infinitesimal width).

We now simply evaluate the estimate for E[𝑉 ] using the usual weighted average formula, with

infinitesimal arithmetic

E[𝑉 ] ≈
∑𝑁

𝑘=0 (𝑤𝑒𝑖𝑔ℎ𝑡𝑘 ) · (𝑉𝑘 )∑𝑁
𝑘=0 (𝑤𝑒𝑖𝑔ℎ𝑡𝑘 )

(2)

In the denominator we are adding numbers of the form𝑤𝑒𝑖𝑔ℎ𝑡𝑘 = 𝑤𝑘𝜖
𝑛𝑘 . Only the numbers with

the minimum value 𝑛𝑘 = 𝑛𝑚𝑖𝑛 matter; the others are infinitesimally small compared to those, and

do not get taken into account due to the definition of (+) on infinitesimal numbers. The same holds

for the numerator: the values 𝑉𝑘 associated with weights that are infinitesimally smaller do not get

taken into account (an optimized implementation could reject a trial as soon as weight becomes

infinitesimally smaller than the current sum of accumulated weights, since those trials will never

contribute to the estimate of E[𝑉 ]). Therefore the form of the fraction is

E[𝑉 ] ≈ 𝐴𝜖𝑛𝑚𝑖𝑛

𝐵𝜖𝑛𝑚𝑖𝑛
=
𝐴

𝐵
𝜖𝑛𝑚𝑖𝑛−𝑛𝑚𝑖𝑛 =

𝐴

𝐵
𝜖0

that is, the infinitesimal factors cancel out in the estimate forE[𝑉 ], andwe obtain a non-infinitesimal

result.

We shall now suppose that the symbolic infinitesimal eps only occurs in the width of intervals

inobserve(D,(x,r*eps)) calls, and not, for instance, in the return value of the probabilistic

program. In this case, the estimate (2) of E[𝑉 ] satisfies the conditions of Theorem 5.5. The calculated

estimate may be viewed as a probability expression 𝑓 (𝜖) of 𝜖 (Definition 5.4), and since 𝑓 (𝜖) = 𝐴
𝐵
𝜖0,

the theorem implies that lim𝑥→0 𝑓 (𝑥) = 𝐴
𝐵
. Therefore the estimate calculated by importance

sampling with infinitesimal arithmetic indeed agrees with taking the limit 𝜖 → 0. Figure ?? shows
three example probabilistic programs that are parameterized by the interval width. The blue lines

show several runs of the probabilistic program as a function of the interval width, and the orange

line shows the result when taking the width to be 𝜖 . Taking the width to be exactly 0 results in

division by zero in the weighted average, but taking it to be 𝜖 correctly computes the limit: the

blue lines converge to the orange lines as the width goes to 0.

5.4 The Correspondence Between Observe on Points and Observe on Intervals
We may take a program written using observe(D,x) with exact conditioning on points, and

convert it to our language by replacing such calls with observe(D,(x,w*eps)) where w is some

constant to make the units correct. For programs that exhibit a paradox of type 1 by executing a

different number of observes depending on the outcome of calls to rand, the computed expectation

values will change. However, for programs that always execute the same number of observe calls,

regardless of the outcome of rand calls, the computed expectation values will not be affected by
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function example1(width)
h = rand(Normal(1.70, 0.2))
w = rand(Normal(70, 30))
if rand(Bernoulli(0.5))
observe(Normal(2.0,0.1),
Interval(h,10*width))

else
observe(Normal(90,5),
Interval(w,width))

end
return w / h^2

end

function example2(width)
h = rand(Normal(1.7,0.5))
if rand(Bernoulli(0.5))
observe(Normal(2.0,0.1),
Interval(h,width))

end
return h

end

function example3(width)
x = rand(Normal(10,5))
observe(Normal(15,5),
Interval(x,width))

return x
end

Fig. 1. Three example programs evaluated with finite width intervals with width going to zero (blue curves)
and with infinitesimal width (orange curves). The finite width result correctly converges to the infinitesimal
result in the limit𝑤 → 0.
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this translation. To see this, note that a call to observe(D,x) will multiply weight *= pdf(D,x),
whereas observe(D,(x,w*eps)) will multiply weight *= pdf(D,x)*w*eps. Thus if the observe
calls are the same in all trials, the only difference is that weight will contain an extra factor of𝑤𝜖

in all trials. The net result is that both the numerator and denominator in the weighted average get

multiplied by the factor𝑤𝜖 , which has no effect. Thus this translation is conservative with respect

to the old semantics, in the sense that it does not change the result that already well-behaved

probabilistic programs compute.

5.5 Parameter Transformations as a Language Feature
The three paradoxes we identified all have to do with parameter transformations. We explicitly

add parameter transformations as a language feature. A parameter transformation 𝑇 allows us

to transform a probability distribution 𝐷 to 𝑇 (𝐷), such that sampling from 𝑇 (𝐷) is the same

as sampling from 𝐷 and then applying the function 𝑇 to the result. In order to ensure that the

distribution 𝑇 (𝐷) has a probability density function we require 𝑇 to be continuously differentiable.

We can also use a parameter transformation to transform an interval from 𝐼 to𝑇 (𝐼 ) = {𝑇 (𝑥) : 𝑥 ∈ 𝐼 }
which contains all the numbers 𝑇 (𝑥) for 𝑥 ∈ 𝐼 . In order to ensure that the transformed interval is

again an interval, we require that𝑇 is monotone, that is, whenever 𝑎 < 𝑏 we also have𝑇 (𝑎) < 𝑇 (𝑏).
In this case, 𝑇 ’s action on an interval [𝑎, 𝑏] is simple: 𝑇 ( [𝑎, 𝑏]) = [𝑇 (𝑎),𝑇 (𝑎)].

Definition 5.6. A parameter transformation𝑇 : RA → RB is a continuously differentiable function
with 𝑇 ′(𝑥) > 0 for all 𝑥 ∈ RA, where RA ⊆ R and RB ⊆ R are intervals representing its domain

and range.

A strictly monotone function has an inverse on its range, so parameter transformations have an

inverse 𝑇 −1
and 𝑇 −1 (𝑦) = 𝑇 ′(𝑇 −1 (𝑦))−1 > 0, so the inverse of a parameter transformation is again

a parameter transformation.

Example 5.7. The function𝑇1 (𝑥) = exp(𝑥) is a parameter transformation𝑇1 : (−∞,∞) → [0,∞).
The function 𝑇2 (𝑥) = 100𝑥 is a parameter transformation 𝑇2 : (−∞,∞) → (−∞,∞).

The transformation 𝑇1 can be used to convert decibels to energy density, and 𝑇2 can be used to

convert meters to centimeters.

Probability distributions need to support 3 operations: random sampling with rand(D), comput-

ing the CDF with cdf(D,x) and computing the PDF with pdf(D,x). We define these operations

for the transformed distribution 𝑇 (𝐷).

Definition 5.8. Given a continuous probability distribution 𝐷 and a parameter transformation 𝑇 ,

we define the operations:

rand(𝑇 (𝐷)) = T(rand(𝐷))
cdf (𝑇 (𝐷), 𝑥) = cdf (𝐷,𝑇 −1 (𝑥))
pdf (𝑇 (𝐷), 𝑥) = pdf (𝐷,𝑇 −1 (𝑥)) · (𝑇 −1) ′(𝑥)

This definition matches how probability distributions transform in probability theory. Our imple-

mentation represents a parameter transformation 𝑇 as the 4-tuple of functions (𝑇,𝑇 ′,𝑇 −1, (𝑇 −1) ′),
so that we have access to the inverse and derivative.

Definition 5.9. Given an interval (𝑎,𝑤) withmidpoint 𝑎 ∈ R and width𝑤 ∈ R , we let 𝑙 = 𝑇 (𝑎− 𝑤
2 )

and 𝑟 = 𝑇 (𝑎 + 𝑤
2 ) and define:

𝑇 ((𝑎,𝑤)) =
(
𝑙 + 𝑟
2

, 𝑟 − 𝑙

)
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This performs parameter transformation on an interval represented as a midpoint-width pair. If the

width is infinitesimal, we need a different rule.

Definition 5.10. Given an interval (𝑎,𝑤) with midpoint 𝑎 ∈ R and infinitesimal width 𝑤 , we

define :

𝑇 ((𝑎,𝑤)) = (𝑇 (𝑎),𝑇 ′(𝑎) ·𝑤)

This performs parameter transformation on an infinitesimal width interval, which gets transformed

to an interval whose width is larger by a factor 𝑇 ′(𝑎). The key lemma about parameter transforma-

tions is that they do not affect the value of the (possibly infinitesimal) probability of a (possibly

infinitesimal) interval.

Lemma 5.11. Let 𝑇 be a parameter transformation, 𝐷 a distribution, and 𝐼 an interval. Then
𝑃 (𝑇 (𝐷),𝑇 (𝐼 )) = 𝑃 (𝐷, 𝐼 ) where 𝑃 is the probability function defined at (1).

Proof. We distinguish non-infinitesimal intervals from infinitesimal intervals.

• If 𝐼 = (𝑎,𝑤) is non infinitesimal, then by Definition (1):

𝑃 (𝐷, (𝑎,𝑤)) = cdf (𝐷, 𝑎 + 1

2
𝑤) − cdf (𝐷, 𝑎 − 1

2
𝑤)

For 𝑇 ((𝑎,𝑤)) we have, where 𝑙 = 𝑇 (𝑎 − 𝑤
2 ) and 𝑟 = 𝑇 (𝑎 + 𝑤

2 ):

𝑇 ((𝑎,𝑤)) = ( 𝑙 + 𝑟
2

, 𝑟 − 𝑙)

and by (1):

𝑃 (𝑇 (𝐷),𝑇 ((𝑎,𝑤))) = cdf (𝑇 (𝐷), 𝑙 + 𝑟
2

+ 1

2
(𝑟 − 𝑙)) − cdf (𝑇 (𝐷), 𝑙 + 𝑟

2
− 1

2
(𝑟 − 𝑙))

= cdf (𝑇 (𝐷), 𝑟 ) − cdf (𝑇 (𝐷), 𝑙)
= cdf (𝐷,𝑇 −1 (𝑟 )) − cdf (𝐷,𝑇 −1 (𝑙))

= cdf (𝐷,𝑇 −1 (𝑇 (𝑎 + 𝑤

2
))) − cdf (𝐷,𝑇 −1 (𝑇 (𝑎 − 𝑤

2
)))

= cdf (𝐷, 𝑎 + 𝑤

2
) − cdf (𝐷, 𝑎 − 𝑤

2
)

• If 𝐼 = (𝑎, 𝑟𝜖𝑛) is infinitesimal (𝑛 > 0), then by definition (1):

𝑃 (𝐷, (𝑎,𝑤)) = pdf (𝐷, 𝑥) · 𝑟𝜖𝑛

For 𝑇 ((𝑎, 𝑟𝜖𝑛)) we have:
𝑇 ((𝑎, 𝑟𝜖𝑛)) = (𝑇 (𝑎),𝑇 ′(𝑎) · 𝑟𝜖𝑛)

and by (1):

𝑃 (𝑇 (𝐷),𝑇 ((𝑎, 𝑟𝜖𝑛))) = pdf (𝑇 (𝐷),𝑇 (𝑎)) ·𝑇 ′(𝑎) · 𝑟𝜖𝑛

= pdf (𝐷,𝑇 −1 (𝑇 (𝑎))) · (𝑇 −1) ′(𝑇 (𝑎)) ·𝑇 ′(𝑎) · 𝑟𝜖𝑛

= pdf (𝐷, 𝑎) · 𝑟𝜖𝑛

□

This lemma implies that the effect of observe(T(D),T(I)) is the same as observe(D,I), since
observe(D,I) does weight *= P(D,I). This property of observe ensures the absence of parameter

transformation paradoxes, not only of the three examples we gave, but in general: it does not matter

which parameter scale we use; the weight accumulated remains the same.
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6 IMPLEMENTATION IN JULIA
We have implemented the constructs described in the preceding sections as a simple embedded

DSL in the Julia programming language, with the following interface:

• Infinitesimal numbers 𝑟𝜖𝑛 constructed by Infinitesimal(r,n), with predefined eps =
Infinitesimal(1.0,1), and overloaded infinitesimal arithmetic operations +,-,*,/ ac-

cording to Definition 5.2.

• Probability distributions D with random sampling rand(D) and cdf(D,x) and pdf(D,x).
These distributions are provided by Julia’s Distributions package, which supports beta,

normal, Cauchy, Chi-square, Bernoulli, Binomial, and many other continuous distributions

and discrete distributions.

• Intervals constructed by Interval(mid,width), where width may be infinitesimal, and an

operation P(D,I) to compute the (possibly infinitesimal) probability that a sample from 𝐷

lies in the interval 𝐼 . If 𝐼 is infinitesimal, then this uses the PDF, and if 𝐼 has finite width, then

this uses the CDF, according to Definition 5.3.

• Parameter transformations T represented as 4-tuples (𝑇,𝑇 ′,𝑇 −1, (𝑇 −1) ′), with operations

T(D) and T(I) to transform probability distributions and intervals, according to Definitions

5.8, 5.9, and 5.10.

• The main operations of probabilistic programming DSL are the following:

– rand(D), where D is a distribution provided by Julia’s Distributions package.

– observe(D,I), where D is a continuous distribution and I is an interval, or D is a discrete

distribution and I is an element, implemented as weight *= P(D,I)
– importance(trials,program) which does importance sampling, where trials is the

number of trials to run, and program is a probabilistic program written as a Julia function

that uses rand and observe, and returns the value that we wish to estimate the expectation

value of. Importance sampling is implemented as described in Section 5.3.

The example in the introduction can be written as follows:

function example1_m()
h = rand(Normal(1.7,0.5))
if rand(Bernoulli(0.5))

observe(Normal(2.0,0.1), Interval(h,eps))
end
return h

end
estimate = importance(1000000,example1_m)

This program will produce an estimate very close to 1.7. If we change the units to centimeters, we

will get an estimate very close to 170, as expected:

function example1_cm()
h = rand(Normal(170,50))
if rand(Bernoulli(0.5))

observe(Normal(200,10), Interval(h,100*eps))
end
return h

end
estimate = importance(1000000,example1_cm)

The artifact contains the other examples from the paper and further examples to illustrate the use

of the DSL [Jacobs 2020].
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7 CONCLUSION & FUTUREWORK
We have seen that naive likelihood accumulation results in unit anomalies when observe statements

with continuous distributions are executed conditionally on random data, and we have shown

that the culprit is the use of probability densities. From an analysis of what observe statements

mean in the discrete case, we motivated a switch to interval-based observe statements, which

have a probabilistic and rejection sampling interpretation. To recover the behavior of measure-

zero observe statements we introduced intervals with infinitesimal width. This results in the

accumulation of infinitesimal probabilities rather than probability densities, which solves the

unit anomalies and paradoxes even when conditioning on events of measure zero. Infinitesimal

probabilities also enabled us to implement parameter transformations that do not change the

behavior of the program. We implemented this form of probabilistic programming as an embedded

DSL in Julia.

This improves the state of the art in two ways:

(1) It fixes unit and parameter transformation paradoxes, which result in surprising and in some

cases arguably incorrect behavior in existing probabilistic programming languages when

continuous observe statements are executed conditionally on random data, or when nonlinear

parameter transformations are performed.

(2) It gives the observe statement a probabilistic and rejection sampling interpretation, with

measure zero conditioning as a limiting case when the observation interval is of infinitesimal

width.

We hope that this will have a positive impact on the development of the formal semantic foundations

of probabilistic programming languages, potentially reducing the problem of conditioning to events

of positive measure. On the implementation side, we hope to generalize more powerful inference

algorithms such as Metropolis-Hastings and SMC to work with infinitesimal probabilities.
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