
107

Multiparty GV: Functional Multiparty Session Types with
Certified Deadlock Freedom
JULES JACOBS, Radboud University Nijmegen, The Netherlands
STEPHANIE BALZER, Carnegie Mellon University, USA
ROBBERT KREBBERS, Radboud University Nijmegen, The Netherlands

Session types have recently been integrated with functional languages, bringing message-passing concurrency
to functional programming. Channel endpoints then become first-class and can be stored in data structures,
captured in closures, and sent along channels. Representatives of the GV (Wadler’s “Good Variation”) session
type family are of particular appeal because they not only assert session fidelity but also deadlock freedom,
inspired by a Curry-Howard correspondence to linear logic. A restriction of current versions of GV, however, is
the focus on binary sessions, limiting concurrent interactions within a session to two participants. This paper
introduces Multiparty GV (MPGV), a functional language with multiparty session types, allowing concurrent
interactions among several participants. MPGV upholds the strong guarantees of its ancestor GV, including
deadlock freedom, despite session interleaving and delegation. MPGV has a novel redirecting construct for
modular programming with first-class endpoints, thanks to which we give a type-preserving translation from
binary session types to MPGV to show that MPGV is strictly more general than binary GV. All results in this
paper have been mechanized using the Coq proof assistant.

CCS Concepts: • Software and its engineering→ Concurrent programming languages.

Additional Key Words and Phrases: Session types, message-passing concurrency, deadlock freedom

ACM Reference Format:
Jules Jacobs, Stephanie Balzer, and Robbert Krebbers. 2022. Multiparty GV: Functional Multiparty Session
Types with Certified Deadlock Freedom. Proc. ACM Program. Lang. 6, ICFP, Article 107 (August 2022), 30 pages.
https://doi.org/10.1145/3547638

1 INTRODUCTION
Session types are a type discipline for message-passing concurrency. Originally developed in the
context of process calculi by Honda [1993]; Honda et al. [1998], they were later generalized to
object-oriented [Dezani-Ciancaglini et al. 2006] and functional languages [Gay and Vasconcelos
2010] leading to implementations in mainstream languages like Haskell [Pucella and Tov 2008;
Imai et al. 2010; Lindley and Morris 2016a], Scala [Scalas and Yoshida 2016], OCaml [Padovani 2017;
Imai et al. 2019], and Rust [Jespersen et al. 2015; Kokke 2019; Chen et al. 2022].

A particularly exciting development is the GV (“Good Variation”) session type family, pioneered
by Gay and Vasconcelos [2010], later coined GV and refined byWadler [2012], and further developed
by e.g., Lindley and Morris [2015, 2016b, 2017]; Fowler et al. [2019, 2021]; Kokke and Dardha [2021b];
Jacobs et al. [2022a]. The GV family combines session typeswith functional programming by treating
session-typed channels as first-class data, similar to references in ML. Channels can be stored in
data structures (like lists), captured by closures, and sent along channels (even when contained in

Authors’ addresses: Jules Jacobs, Radboud University Nijmegen, The Netherlands, mail@julesjacobs.com; Stephanie Balzer,
Carnegie Mellon University, USA, balzers@cs.cmu.edu; Robbert Krebbers, Radboud University Nijmegen, The Netherlands,
mail@robbertkrebbers.nl.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2022 Copyright held by the owner/author(s).
2475-1421/2022/8-ART107
https://doi.org/10.1145/3547638

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 107. Publication date: August 2022.

https://doi.org/10.1145/3547638
https://doi.org/10.1145/3547638

107:2 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers

data structures, thus generalizing delegation). Similarly, the SILL family of session type languages
[Toninho et al. 2013; Pfenning and Griffith 2015; Toninho 2015] integrates a process language via a
contextual monad with an unrestricted functional language.
Aside from a tight integration with functional programming, a key strength of GV and SILL

representatives is that they do not only guarantee type safety (“well-typed programs cannot get
stuck due to illegal operations”), but also deadlock freedom or global progress (“well-typed programs
cannot end up waiting for each other”). This result follows from adopting a session initialization
pattern based on cut, inspired by the Curry-Howard correspondence between linear logic and
the session-typed 𝜋-calculus [Caires and Pfenning 2010; Wadler 2012]. Such a pattern combines
session creation and thread spawning to avoid deadlocks. The family of session types based on the
pioneering work by Honda [1993]; Honda et al. [1998], in contrast, separates session creation from
thread (process) spawning and thus does not prevent deadlocks. A cut-based initialization pattern
also seamlessly integrates with channels as first-class data.

The restriction of interactions to two participants, present in GV, SILL, and session types based
on the pioneering work by Honda [1993]; Honda et al. [1998], led to the development of multiparty
session types [Honda et al. 2008, 2016]. Multiparty session types allow an arbitrary but statically
determined number of participants (“roles”) to engage in a session. The key ingredient of multiparty
session types is a global type that defines a protocol from the perspective of the entire session,
from which local types for each participant can be generated. A global type not only increases
expressivity but also establishes deadlock freedom for a system consisting of a single session.
The development of GV-style session types and multiparty session types has mostly happened

independently of each other. There exists no system that combines the flexibility of functional
programming with the expressivity of multiparty session types. This paper introduces Multiparty
GV (MPGV)—a linear lambda calculus with first-class multiparty sessions and dynamic thread
and channel initialization. Deadlock freedom is guaranteed purely by linear type checking and an
𝑛-ary “fork” inspired by a cut-based initialization pattern. MPGV complements linear sessions with
standard unrestricted functional types and language features, such as general recursive functions
and algebraic data types. The integration of multiparty session types into a GV-style functional
language brings a number of challenges:

Deadlock freedom. Although global types guarantee deadlock freedom for a single multiparty
session, global types alone cannot guarantee deadlock freedom for interleaved multiparty sessions.
To establish deadlock freedom in the presence of dynamic session spawning and session delegation,
where participants can engage in several multiparty sessions simultaneously, Kobayashi-style
“orders/priorities” [Kobayashi 1997, 2002, 2006] have been used to rule out cyclic dependencies
among channel actions. The resulting interaction type systems [Coppo et al. 2013; Bettini et al.
2008; Coppo et al. 2016] are complementary in terms of expressivity compared to GV. They are
more powerful in the sense that they allow cyclic communication topologies within and between
sessions. However, well-typed programs in GV cannot be translated into these systems because
orders/priorities are static and sessions are not first-class data.

In this paper we take the GV approach to deadlock freedom—MPGV features an 𝑛-ary “fork” that
combines the creation of 𝑛 threads and multiparty session for 𝑛 participants. While this makes the
MPGV type system and operational semantics simple, proving that it in fact guarantees deadlock
freedom is challenging. To handle dynamic thread and channel creation, direct-style deadlock
freedom proofs of GV (like those by Lindley and Morris [2015]; Fowler et al. [2021]; Jacobs et al.
[2022a]) crucially rely on the communication topology remaining acyclic during program execution.
For multiparty session types this is not the case—the communication topology between sessions is
acyclic, but the communication topology within a session is not. The key insight of our work is

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 107. Publication date: August 2022.

Multiparty GV: Functional Multiparty Session Types with Certified Deadlock Freedom 107:3

to represent the cyclic communication topology within sessions as an acyclic graph at the logical
level, without needing central coordination in the operational semantics.

Participant redirecting. Binary session types specify the types of data that is being sent and
received, while local multiparty session types also specify the participants names to/from whom
that data is received. These names make programming with first-class sessions non modular since
the exact participants are fixed in type signatures. Suppose that one has library functions 𝑓 and
𝑔 such that 𝑓 returns a session of a certain session type, and 𝑔 expects an argument with that
same session type, but with different participant names. We introduce a “redirecting” construct,
which allows an endpoint to be passed to functions where different participant names are expected.
Using this construct, we give a type-preserving translation from binary session types into MPGV,
showing that MPGV restricted to two participants per session is at least as expressive as GV.

Mechanization. The complexities of session types, especially in the multiparty setting, and
the existence of published broken proofs—including the failure of subject reduction for several
multiparty systems [Scalas and Yoshida 2019a]—gave the impetus for mechanization. Whereas
there exists extensive work on mechanizing the meta-theory of binary session types [Thiemann
2019; Rouvoet et al. 2020; Hinrichsen et al. 2021; Tassarotti et al. 2017; Goto et al. 2016; Ciccone and
Padovani 2020; Castro-Perez et al. 2020; Gay et al. 2020], deadlock freedom for binary session types
has only recently been mechanized by Jacobs et al. [2022a]. For multiparty session types, the only
mechanization is Zooid by Castro-Perez et al. [2021], which mechanizes the trace semantics of a
single multiparty session and proves that it conforms to its global type. In the spirit of this line of
work, we provide a full mechanization of all our results in the Coq proof assistant.

Contributions and outline. Our main contribution isMPGV—the first deadlock-free linear
lambda calculus with first-class multiparty sessions, dynamic thread and channel initialization, and
functional features like general recursive functions and algebraic data types. Concretely:
• We explain the key ideas behind MPGV in the context of new and existing examples (§2).
• We formalize the type system and operational semantics of MPGV (§3).
• We give a type-preserving embedding of GV-style binary session types into MPGV, using our
new redirecting construct, showing that MPGV goes strictly beyond binary session types (§4).

• We prove a combined partial deadlock and memory-leak freedom theorem for multiparty session
types that also subsumes type safety and global progress (§5 and §7).

• Inspired by Scalas and Yoshida [2019a], we extend MPGV with a more flexible notion of consis-
tency that does not rely on global types (§6).

• We mechanize all our results in the Coq proof assistant (§8).

2 MPGV BY EXAMPLE
We introduce MPGV’s features, based on examples (§2.1–§2.8), and provide the main intuitions for
how MPGV guarantees deadlock freedom for cyclic intra-session topologies (§2.9).

2.1 Global and Local Types
Similar to original multiparty session types [Honda et al. 2008], sessions in MPGV can be described
by a global type. A simple example of a global type is:

𝐺 ≜ [0 → 1]N.[1 → 2]N.[2 → 0]N.End.

This global type says that participant 0 first sends a value of natural number type N to participant 1,
then 1 sends a N to 2, then 2 sends a N to 0, and finally the protocol ends. The global type𝐺 induces

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 107. Publication date: August 2022.

107:4 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers

local types for each participant 𝑝 via projections 𝐺 ⇂ 𝑝:
𝐺 ⇂ 0 = ![1]N.?[2]N.End 𝐺 ⇂ 1 = ?[0]N.![2]N.End 𝐺 ⇂ 2 = ?[1]N.![0]N.End

The local type ![𝑝]𝜏 .𝐿 indicates that the next action should be sending a value 𝑣 of type 𝜏 to
participant 𝑝 , to then continue with 𝐿. Dually, ?[𝑝]𝜏 .𝐿 indicates that the next action should be
receiving a value 𝑣 of type 𝜏 from participant 𝑝 , to then continue with 𝐿. Finally, End states that
the protocol has finished and the participant’s endpoint should be closed.

2.2 Combined Session and Channel Initialization
With our simple global type 𝐺 at hand, we now give a program that implements this global type:

let 𝑐0 : ![1]N.?[2]N.End = fork(service1, service2) in
let 𝑐0 : ?[2]N.End = send[1] (𝑐0, 99) in
let (𝑐0, 𝑛) : End × N = receive[2] (𝑐0) in
close(𝑐0)

The fork operation simultaneously forks off 2 threads and creates 3 channel endpoints for the
participants in the session. The fork returns endpoint 𝑐0 with type 𝐺 ⇂ 0 = ![1]N.?[2]N.End, and
runs functions service1 and service2 (shown below) in background threads. The main thread uses
send[1] (𝑐0, 99) to send the message “99” to participant 1 (i.e., service1). As is common in functional
session-typed languages, the send and receive operations of MPGV return the endpoint back to us.
The returned endpoint will be at a different type, because the step has been taken in the session
type. For convenience, the above code let-binds the returned endpoint to the same name. The main
thread then uses the operation receive[2] (𝑐0) and blocks to receive a message from endpoint 2 (i.e.,
service2). After the message has been received, it closes the endpoint using close.

Similar to many multiparty session-type systems, MPGV uses numbers for participant names in
send and receive to indicate which other participant the communication concerns. Note that also for
receive it is necessary to indicate which participant to receive from, because multiple participants
could send a message to the same participant simultaneously, and these messages may have different
types. The endpoint returned from fork has participant number 0, and endpoints of the forked-off
threads have participant numbers 1, 2, etc. The forked-off threads could be implemented as:

service1 : (?[0]N.![2]N.End) → 1 service2 : (?[1]N.![0]N.End) → 1

service1 𝑐1 ≜ let (𝑐1, 𝑛) = receive[0] (𝑐1) in
let 𝑐1 = send[2] (𝑐1, 𝑛 + 3) in
close(𝑐1)

service2 𝑐2 ≜ let (𝑐2, 𝑛) = receive[1] (𝑐2) in
let 𝑐2 = send[0] (𝑐2, 𝑛 + 4) in
close(𝑐2))

The arguments of fork are closures that take the endpoint (typed with local type𝐺 ⇂ 𝑝) as argument
and return the unit value when done. The first forked-off thread service1 tries to receive a message
from participant 0 (i.e., the main thread), increments the received number, and passes it on to
endpoint 2 (i.e., service2). Similarly, the second forked-off thread service2 receives a number from
participant 1 (i.e., service1), increments it, and passes it to participant 0 (i.e., the main thread).

Novel elements of MPGV. The 𝑛-ary fork ensures that the communication topology between
sessions remains acyclic. This is in contrast to original multiparty session-type systems [Honda
et al. 2008], which use service names to create new sessions between already existing, concurrently
running processes, selecting the participating processes non-deterministically in case there are
several attempting to participate (see §9 for an in-depth discussion). By separating session creation
from thread spawning in these original systems, cyclic communication topologies can be created,
and hence interleaved sessions can deadlock. Inspired by binary session-typed lambda-calculi like
GV [Wadler 2012; Lindley and Morris 2015] and multi-cut with coherence proofs [Carbone et al.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 107. Publication date: August 2022.

Multiparty GV: Functional Multiparty Session Types with Certified Deadlock Freedom 107:5

2015, 2016, 2017], MPGV combines session creation with thread spawning, to maintain acyclicity
of the communication topology and guarantee deadlock freedom.

2.3 Interleaving and First-Class Endpoints
We now illustrate MPGV’s support for session interleaving and delegation. Similar to the original
versions of GV by Gay and Vasconcelos [2010]; Wadler [2012], MPGV obtains delegation without
the need for special language constructs since endpoints are first class. We modify the example
from §2.2, which performs its communication actions on 𝑐0 locally, by letting the main thread fork
off yet another thread to perform the communication:

let 𝑐0 : 𝐺 ⇂ 0 = fork(service1, service2) in
let 𝑑0 : 𝐺 ′ ⇂ 0 = fork(_𝑑1 : 𝐺 ′ ⇂ 1. let (𝑑1, 𝑥) : (![0]N.End) × (𝐺 ⇂ 0) = receive[0] (𝑑1) in

let 𝑥 : ?[2]N.End = send[1] (𝑥, 99) in
let (𝑥, 𝑛) : End × N = receive[2] (𝑥) in
let 𝑑1 : End = send[0] (𝑑1, 𝑛) in
close(𝑥); close(𝑑1)) in

let 𝑑0 : ?[1]N.End = send[1] (𝑑0, 𝑐0) in
let (𝑑0, 𝑛) : End × N = receive[1] (𝑑0) in
close(𝑑0)

To type the second fork, we need to come up with a second global type that governs the communi-
cation between the third forked-off thread and the main thread:

𝐺 ′ ≜ [0 → 1] (𝐺 ⇂ 0).[1 → 0]N.End where 𝐺 ⇂ 0 = ![1]N.?[2]N.End
The projections are 𝐺 ′ ⇂ 0 = ![1] (𝐺 ⇂ 0).?[1]N.End and 𝐺 ′ ⇂ 1 = ?[0] (𝐺 ⇂ 0).![0]N.End. This
global type shows that participant 0 (the main thread) of 𝐺 ′ first delegates an endpoint with local
type 𝐺 ⇂ 0 to participant 1 of 𝐺 ′ (the third forked-off thread), which then sends a natural number
back. In the code, the main thread sends endpoint 𝑐0, which the third forked-off thread receives as
𝑥 . The third forked-off thread then executes the communication according to local type 𝐺 ⇂ 0, and
sends back a natural number to the main thread.

Novel elements of MPGV. As demonstrated by the above example, MPGV’s session-typed
endpoints are first class and can thus be sent over channels (i.e., delegated) like any other data.
MPGV not only allows sending single endpoints over channels, but also lists of endpoints (§2.8)
or closures, which may capture endpoints. Data types that contain endpoints are treated linearly
in order to protect type safety, whereas data types that cannot contain endpoints (e.g., lists of
natural numbers) may be freely copied and discarded. MPGV guarantees deadlock freedom in the
presence of interleaved sessions solely by linear typing and 𝑛-ary fork, and without any extrinsic
mechanisms like orders/priorities [Bettini et al. 2008; Coppo et al. 2013, 2016].

2.4 Participant Redirecting
In the example from §2.2 we have two threads service1 and service2 that were doing more or less the
same thing (adding 3 and 4, respectively). To obtain a language that enables modular programming,
we would like to write a single function that generalizes both services that we could use for both
threads in the fork operation. Let us try to make an attempt:

service : N → (?[0]N.![1]N.End) → 1

service 𝑎 𝑐 ≜ let (𝑐, 𝑛) = receive[0] (𝑐) in
let 𝑐 = send[1] (𝑐, 𝑛 + 𝑎) in
close(𝑐)

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 107. Publication date: August 2022.

107:6 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers

The function service takes a natural number 𝑎 for the value that should be added. Unfortunately,
service 3 and service 4 cannot readily be used because their types do not match up with 𝐺 ⇂ 1 =

?[0]N.![2]N.End and 𝐺 ⇂ 2 = ?[1]N.![0]N.End since the participant numbers are off.
MPGV provides a redirect[𝜋] (𝑐) operation that allows us to locally redirect participant numbers,

making it possible for a programmer to pass endpoints to destinations where different participant
numbers are expected in the type signature. The informal semantics of the redirect operation is
that any send[𝑝] and receive[𝑝] operations on 𝑐′ = redirect[𝜋] (𝑐) get redirected to send[𝜋 (𝑝)]
and receive[𝜋 (𝑝)] on 𝑐 . With MPGV’s redirect operation at hand, we can change the fork in the
first line of the example in §2.2 into:

fork(_𝑐1. service 3 (redirect[0 ↦→ 0, 1 ↦→ 2] (𝑐1)), _𝑐2 . service 4 (redirect[0 ↦→ 1, 1 ↦→ 0] (𝑐2)))

Novel elements of MPGV. Redirecting is a novel concept that has not been explored in
multiparty session types to our knowledge. Redirecting is important for modularity because it
allows composing a function 𝑓 with a function 𝑔 with compatible range and domain types even
when participant numbers are at odds. Redirecting is also crucial for embedding binary sessions in
MPGV; without redirecting, that would not be possible (see §4).

2.5 Choice and Recursive Session Types
Similar to traditional (multiparty) session types, MPGV supports choice and recursion. For example:

𝐺 ′′ ≜ [0 → 1]{𝐴 : N.𝐺 ′′, 𝐵 : string.End}
In this global type, participant 0 sends participant 1 a choice label {𝐴, 𝐵}. If the choice label is
𝐴, then the payload of the message is of type N, and the protocol recursively loops back to the
initial state. If the choice label is 𝐵, then the payload of the message is of type string, and then the
protocol ends. This gives the following local projections:

𝐺 ′′ ⇂ 0 ≜ ![1]{𝐴 : N.(𝐺 ′′ ⇂ 0), 𝐵 : string.End} 𝐺 ′′ ⇂ 1 ≜ ?[0]{𝐴 : N.(𝐺 ′′ ⇂ 1), 𝐵 : string.End}
With choice, not all global types one can write down are valid: all the branches of a choice must
have equal projections for participants that are neither the sender nor the receiver of the choice.
This is to ensure that each participant always has enough information to determine the type of the
next message that they should send or expect to receive [Honda et al. 2008, 2016]. MPGV supports
recursive functions, which are crucial to provide implementations of recursive session types.

2.6 Two Buyer Protocol
The two buyer protocol is a classic example from the literature [Honda et al. 2008] with two buyers
(Alice and Bob) and a Seller. The protocol has the following global type in MPGV (we use symbolic
participant identifiers for readability; one can take 𝑆 = 0, 𝐴 = 1, 𝐵 = 2):

𝐺𝑆𝐴𝐵 ≜ [𝐴 → 𝑆]string.[𝑆 → 𝐴]N. [𝑆 → 𝐵]N.[𝐴 → 𝐵]N.
[𝐵 → 𝑆]{Yes : [𝑆 → 𝐵]date. End,No : End}

This global protocol has the following projections for Alice, Bob, and Seller:

𝐺𝑆𝐴𝐵 ⇂ 𝐴 = ![𝑆]string.?[𝑆]N.![𝐵]N.End
𝐺𝑆𝐴𝐵 ⇂ 𝐵 = ?[𝑆]N.?[𝐴]N.![𝑆]{Yes : ?[𝑆]date.End,No : End}
𝐺𝑆𝐴𝐵 ⇂ 𝑆 = ?[𝐴]string.![𝐴]N.![𝐵]N.?[𝐵]{Yes : ![𝐵]date.End,No : End}

The participants perform the following interactions:
(1) Alice tells the Seller which item she wants to buy ([𝐴 → 𝑆]string).
(2) The Seller tells both Alice and Bob how much the item costs ([𝑆 → 𝐴]N. [𝑆 → 𝐵]N).

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 107. Publication date: August 2022.

Multiparty GV: Functional Multiparty Session Types with Certified Deadlock Freedom 107:7

(3) Alice tells Bob how much money she is willing to contribute to the purchase ([𝐴 → 𝐵]N).
(4) Bob decides whether they can afford the item, and informs the Seller of his decision ([𝐵 →

𝑆]{Yes : . . . ,No : . . .}).
(5) If Bob says Yes, the Seller sends Bob the date at which the item will be delivered and then ends

the protocol ([𝑆 → 𝐵]date.End).
(6) If Bob says No, the protocol ends immediately (End).
A possible implementation of the Seller is as follows:

seller : 𝐺𝑆𝐴𝐵 ⇂ 𝑆 → 1

seller 𝑐𝑆 ≜
let (𝑐𝑆 , 𝑖𝑡𝑒𝑚) : (![𝐴]N.![𝐵]N.?[𝐵]{Yes : ![𝐵]date.End,No : End}) × string = receive[𝐴] (𝑐𝑆) in
let 𝑐𝑆 : ![𝐵]N.?[𝐵]{Yes : ![𝐵]date.End,No : End}) = send[𝐴] (𝑐𝑆 , cost (𝑖𝑡𝑒𝑚)) in
let 𝑐𝑆 : ?[𝐵]{Yes : ![𝐵]date.End,No : End}) = send[𝐵] (𝑐𝑆 , cost (𝑖𝑡𝑒𝑚)) in
match receive[𝐵] (𝑐𝑆) with {

⟨Yes :𝑐𝑆 : ![𝐵]date.End⟩ ↦→ let 𝑐𝑆 : End = send[𝐵] (𝑐𝑆 , date(𝑖𝑡𝑒𝑚)) in close(𝑐𝑆)
⟨No :𝑐𝑆 : End⟩ ↦→ close(𝑐𝑆)

}
In the case ⟨Yes :𝑐𝑆 ⟩, we have 𝑐𝑆 : ![𝐵]date.End, whereas in case ⟨No :𝑐𝑆 ⟩ we have 𝑐𝑆 : End, so the
type of the endpoint depends on which choice was made by Bob. Assuming that we also have
functions alice : 𝐺𝑆𝐴𝐵 ⇂ 𝐴 → 1 and bob : 𝐺𝑆𝐴𝐵 ⇂ 𝐵 → 1 for Alice and Bob, we can run the two
buyer protocol with program seller (fork(alice, bob)) .

2.7 Three Buyer Protocol and Session Delegation
The two buyer example has been extended with delegation by Honda et al. [2008]. To help Alice and
Bob, there is a fourth person, Carol. If Bob and Alice cannot afford the item together, then instead
of replying No to the Seller, Bob will send the remainder of his session to Carol (i.e., delegation).
Carol will then respond Yes to the Seller, if the three of them together have enough money. This is
modeled by a separate session between Bob and Carol with global type:

𝐺𝐵𝐶 ≜ [𝐵 → 𝐶] (N × ![𝑆]{Yes : ?[𝑆]date.End,No : End}) .End
Because Bob needs access to Carol, his function is parameterized by that endpoint 𝑐𝐶 as well as his
own endpoint 𝑐𝐵 in the two buyer protocol between him, Alice, and the Seller:

bobdel : 𝐺𝐵𝐶 ⇂ 𝐵 → 𝐺𝑆𝐴𝐵 ⇂ 𝐵 → 1

bobdel 𝑐𝐶 𝑐𝐵 ≜ let (𝑐𝐵, 𝑐𝑜𝑠𝑡) : (?[𝐴]N.![𝑆]{Yes : ?[𝑆]date.End,No : End}) × N = receive[𝑆] (𝑐𝐵) in
let (𝑐𝐵, 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝐴) : (![𝑆]{Yes : ?[𝑆]date.End,No : End}) × N = receive[𝐴] (𝑐𝐵) in
if 𝑐𝑜𝑠𝑡 − 𝑐𝑜𝑛𝑡𝑟𝑖𝑏 < 𝑚𝑎𝑥𝐵 then

let 𝑐𝐵 : ?[𝑆]date.End = send[𝑆] (𝑐𝐵, ⟨𝑌𝑒𝑠⟩) in
let (𝑐𝐵, 𝑑𝑎𝑡𝑒) : End × date = receive[𝑆] (𝑐𝐵) in
close(𝑐𝐵)

else
let 𝑐𝐶 : End = send[𝐶] (𝑐𝐶 , (𝑐𝑜𝑠𝑡 − 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝐴 −𝑚𝑎𝑥𝐵, 𝑐𝐵)) in
close(𝑐𝐶)

In the else branch, Bob sends his endpoint 𝑐𝐵 over his connection to Carol, 𝑐𝐶 . We can run the three
buyer protocol with the following program, assuming that we have carol : 𝐺𝐵𝐶 ⇂ 𝐶 → 1:

let 𝑐𝐶 : 𝐺𝐵𝐶 ⇂ 𝐵 = fork(carol) in
seller (fork(alice, bobdel 𝑐𝐶))

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 107. Publication date: August 2022.

107:8 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers

𝐴

𝐵𝑆

𝐶
{

𝐴

𝐵𝑆

𝐶
{

𝐴

𝑆

𝐶
{

𝑆

𝐶

𝐴

𝑆1

𝐵𝑆 𝑆2

𝐶
{

𝐴

𝑆1

𝐵𝑆 𝑆2

𝐶
{

𝐴

𝑆1

𝑆

𝐶
{

𝑆1

𝑆

𝐶

Fig. 1. Steps in three buyer protocol. Top: physical communication paths; bottom: logical connectivity.

Depending on thread scheduling, operations can be executed in a different order. One possible
execution is graphically depicted in the top row of Figure 1. In the left picture, we have the
session between 𝐴, 𝐵, and 𝑆 , and the session between 𝐵 and 𝐶 . In our operational semantics, the
participants are connected directly, and each participant has their own set of buffers in the heap,
separate from the others. At some point Bob decides to send his session to Carol (second picture),
so the connections of 𝐵 get moved to 𝐶 . Bob then ends his session with Carol (third picture). Alice
ends her participation in the session (fourth picture). This deletes her buffers from the heap, even
though the Seller and Carol may still be actively communicating. The global type ensures that
whenever Alice is allowed to close her session, the other participants are guaranteed not to perform
further communication with her.

2.8 Endpoints in Data Structures
Because of the functional nature of MPGV, we can freely intermix sessions and data structures.
We give an example of a department store, to which we can send several buyers in a list. The
department store will then let the buyers interact by applying the 𝑠𝑒𝑙𝑙𝑒𝑟 function for us. To illustrate
recursive protocols, the department store loops around and accepts new buyers:

departmentstore : (`𝑥 . ?[𝐶]List(𝐺𝑆𝐴𝐵 ⇂ 𝑆).𝑥) → 1

departmentstore 𝑐𝐷 ≜ let (𝑐𝐷 , 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑠) = receive[𝐶] (𝑐𝐷) in
map seller 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑠; departmentstore 𝑐𝐷

Given a function buyers : string → 𝐺𝑆𝐴𝐵 ⇂ 𝑆 that starts up the two or three buyers trying to buy
an item of the given name and returns the seller’s endpoint to interact with them, we can start a
department store and send buyers to it as follows:

let store = fork(departmentstore) in
let 𝑐1 = buyers “ℎ𝑎𝑡” in
let 𝑐2 = buyers “𝑐𝑜𝑤” in
let store = send[𝐷] (store, [𝑐1; 𝑐2]) in
let 𝑐3 = buyers “𝑒𝑔𝑔” in
let 𝑐3 = buyers “𝑏𝑜𝑤” in
let store = send[𝐷] (store, [𝑐3; 𝑐4]) in . . .

Novel elements of MPGV. MPGV allows multiparty endpoints to be stored in data structures,
and captured in closures, which can then be sent as messages. This is in contrast to earlier multiparty
systems, where endpoints can either not be manipulated at all [Castro-Perez et al. 2021], or where

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 107. Publication date: August 2022.

Multiparty GV: Functional Multiparty Session Types with Certified Deadlock Freedom 107:9

there is a separate syntactic category for endpoints, which cannot be mixed with data [Honda et al.
2008; Coppo et al. 2016; Bettini et al. 2008; Coppo et al. 2013].

2.9 Deadlock Freedom of MPGV
MPGV’s deadlock freedom proof is based on two key ideas: (1) local progress within a session is
guaranteed by the global type, and (2) global progress between sessions is guaranteed by our 𝑛-ary
fork and linear typing, asserting that the communication topology between sessions remains acyclic
(despite first-class endpoints). To reason about deadlock freedom we abstract a logical connectivity
topology from the physical communication topology and prove that the logical connectivity topology
remains acyclic. The logical topology of the three buyer protocol is depicted in the bottom row of
Figure 1. It introduces a blue circle for each multiparty session, abstracting over the cyclic topology
within a session and exposing the acyclicity of the logical topology. Figure 1 shows that the logical
connectivity topology remains acyclic throughout the execution. This holds for any well-typed
MPGV program—Figure 10 in § 7 shows how the logical topology is transformed and remains
acyclic for each of the session operations.

Novel elements of MPGV. Similar to binary variants of GV, MPGV ensures global progress
and deadlock freedom for an entire program, solely by linear typing. In contrast, earlier multiparty
systems either guarantee deadlock freedom only for a single session [Castro-Perez et al. 2021;
Honda et al. 2008], or for multiple sessions if types are augmented with extrinsic orders/priorities
[Coppo et al. 2016; Bettini et al. 2008; Coppo et al. 2013]. Moreover, our global progress and deadlock
freedom theorems are mechanized in Coq (§5).

3 THE SEMANTICS OF MPGV
3.1 Syntax and Operational Semantics
Each configuration in our small-step operational semantics consists of a thread pool and heap,
which stores a vector of buffers for each endpoint:

𝜌 ∈ Cfg ≜ List Expr × Heap ℎ ∈ Heap ≜ Endpoint fin−⇀ (Participant fin−⇀ List (Label ×Val))

An endpoint 𝑐 ∈ Endpoint ::= (𝑠, 𝑝) consists of a number 𝑠 ∈ Session identifying the session, and a
number 𝑝 ∈ Participant identifying the participant number of the endpoint in the session.
The operational semantics has three reduction relations. Firstly, 𝑒 {pure 𝑒

′ for pure reductions
of expressions. Secondly, (𝑒, ℎ) {head (𝑒′, ℎ′, ®𝑒) for reductions of channel operations involving the
heap ℎ, with the option to spawn a list of new threads ®𝑒 (a non-empty list for fork, and an empty
list for the other operations). Thirdly, (®𝑒, ℎ) {cfg (®𝑒′, ℎ′) between configurations, which performs
{head on some thread in the thread pool, and also handles evaluation contexts. The formal syntax
and operational semantics of MPGV can be found in Figure 2. We give an informal description of
the semantics of the message-passing operations fork, send, receive, close, and redirect next.

Fork. The fork operation fork(𝑣1, . . . , , 𝑣𝑛) spawns 𝑛 threads and creates a new session between
the 𝑛 + 1 endpoints. The session 𝑠 has (𝑛 + 1) × (𝑛 + 1) buffers in the heap ℎ for the 𝑛 + 1 endpoints,
such that the buffer stored at ℎ(𝑠, 𝑞) (𝑝) queues messages sent from 𝑝 to 𝑞. Session endpoints
𝑐 are represented as triples 𝑐 = #[(𝑠, 𝑝), 𝜋] of a session address 𝑠 ∈ Session, endpoint number
𝑝 ∈ Participant, and translation vector 𝜋 : Participant fin−⇀ Participant, which is used for redirecting
and initialized by fork to be the identity mapping. Each of the values 𝑣𝑖 passed as arguments to
fork must be a closure that accepts an endpoint as its argument, so that the threads run function
calls 𝑣𝑖 #[(𝑠, 𝑖), id] for 𝑖 = 1..𝑛. The fork returns endpoint #[(𝑠, 0), id]. A usage pattern is:

let 𝑐0 = fork((_𝑐1. 𝑒1), . . . , (_𝑐𝑛 . 𝑒𝑛)) in 𝑒0

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 107. Publication date: August 2022.

107:10 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers

Expressions, values, and evaluation contexts

𝑒 ∈ Expr ::= 𝑥 | () | 𝑛 | (𝑒, 𝑒) | ⟨ℓ :𝑒⟩ | _𝑥. 𝑒 | rec 𝑓 𝑥 . 𝑒 | 𝑒 𝑒 | fork(𝑒, . . . , 𝑒) | send[𝑝] (𝑒, ℓ :𝑒) |
receive[𝑝] (𝑒) | close(𝑒) | redirect[𝜋] (𝑒) | let 𝑥 = 𝑒 in 𝑒 |
let (𝑥1, 𝑥2) = 𝑒 in 𝑒 | match 𝑒 with {⟨ℓ :𝑥⟩ ↦→ 𝑒; . . .}ℓ∈𝐼

𝑣 ∈Val ::= () | 𝑛 | (𝑣, 𝑣) | ⟨ℓ :𝑣⟩ | _𝑥. 𝑒 | rec 𝑓 𝑥 . 𝑒 | #[𝑐, 𝜋]
𝐾 ∈ Ctx ::= □ | (𝐾, 𝑒) | (𝑣, 𝐾) | 𝐾 𝑒 | 𝑣 𝐾 | let 𝑥 = 𝐾 in 𝑒 | · · ·

Data structures

𝑠 ∈ Session ≜ N 𝑐 ∈ Endpoint ≜ Session × Participant

𝑝, 𝑞 ∈ Participant ≜ N 𝜋 ∈ Translation ≜ Participant fin−⇀ Participant

ℓ ∈ Label ≜ N ℎ ∈ Heap ≜ Endpoint fin−⇀ (Participant fin−⇀ List (Label ×Val))
𝜌 ∈ Cfg ≜ List Expr × Heap

Small-step operational semantics

(𝑒1, ℎ) {head (𝑒2, ℎ, 𝜖) (if 𝑒1 {pure 𝑒2)
(fork(𝑣1, . . . , 𝑣𝑛), ℎ) {head (#[(𝑠, 0), id], ℎ ⊎ {(𝑠, 0) ↦→ ®𝜖, . . . , (𝑠, 𝑛) ↦→ ®𝜖},

[𝑣1 #[(𝑠, 1), id], . . . , 𝑣𝑛 #[(𝑠, 𝑛), id]])
(send[𝑞] (#[(𝑠, 𝑝), 𝜋], ℓ :𝑣), ℎ) {head (#[(𝑠, 𝑝), 𝜋], push((𝑠, 𝜋 (𝑞)), 𝑝, ⟨ℓ :𝑣⟩ , ℎ), 𝜖)
(receive[𝑝] (#[(𝑠, 𝑞), 𝜋]), ℎ) {head (⟨ℓ : (𝑣, #[(𝑠, 𝑞), 𝜋])⟩ , ℎ′, 𝜖)

(if pop((𝑠, 𝑞), 𝜋 (𝑝), ℎ) = (⟨ℓ :𝑣⟩ , ℎ′))
(close(#[(𝑠, 𝑝), 𝜋]), ℎ) {head ((), ℎ\{(𝑠, 𝑝)}, 𝜖)

(redirect[𝜋1] (#[(𝑠, 𝑝), 𝜋2]), ℎ) {head (#[(𝑠, 𝑝), 𝜋2 ◦ 𝜋1], ℎ, 𝜖)
(®𝑒𝑎 ++ [𝐾 [𝑒]] ++ ®𝑒𝑏, ℎ) {cfg (®𝑒𝑎 ++ [𝐾 [𝑒′]] ++ ®𝑒𝑏 ++ ®𝑒, ℎ′) (if (𝑒, ℎ) {head (𝑒′, ℎ′, ®𝑒))

Fig. 2. Syntax and operational semantics of MPGV (selected rules).

Send. The send operation send[𝑞] (𝑐, ℓ : 𝑣) sends the message ⟨ℓ :𝑣⟩ to 𝑞 via the endpoint 𝑐 =

#[(𝑠, 𝑝), 𝜋] by adding themessage to the end of buffer (using the operation push((𝑠, 𝜋 (𝑞)), 𝑝, ⟨ℓ :𝑣⟩ , ℎ)
in Figure 2). The message is tagged with a label ℓ , which can influence the future actions allowed
to be performed by the participant. We revisit this in detail when we introduce the typing rules.
Our send operation is asynchronous. One can encode synchronous communication by inserting
after each message 𝐴 → 𝐵 a dummy message 𝐵 → 𝐴 with type unit to enforce synchronization.

Receive. The receive operation receive[𝑝] (𝑐) receives a message from 𝑝 via endpoint 𝑐 =

#[(𝑠, 𝑞), 𝜋]. The receive operation takes the first message out of buffer (using the operation
pop((𝑠, 𝑞), 𝜋 (𝑝), ℎ) = (⟨ℓ :𝑣⟩ , ℎ′) in Figure 2). If the buffer is empty, the operation blocks until
a message becomes available.

Close. The close operation close(𝑐) deletes all the buffers fromwhich the endpoint 𝑐 = #[(𝑠, 𝑞), 𝜋]
receives messages, that is, it simply deletes entry ℎ((𝑠, 𝑞)) of the heap.

Redirect. The redirecting operation 𝑐′ = redirect[𝜋] (𝑐) where 𝜋 ∈ Participant fin−⇀ Participant
redirects messages so that send and receive operations to 𝑝 on 𝑐′ are redirected to 𝜋 (𝑝) on 𝑐 .

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 107. Publication date: August 2022.

Multiparty GV: Functional Multiparty Session Types with Certified Deadlock Freedom 107:11

Γ unr 𝑥 ∉ Γ

{𝑥 ↦→ 𝜏} ∪ Γ ⊢ 𝑥 :𝜏

Γ1 ⊥ Γ2 Γ1 ⊢ 𝑒1 :𝜏1 =⇒ 𝜏2 Γ2 ⊢ 𝑒2 :𝜏1 (=⇒)∈ {→,−◦}

Γ1 ∪ Γ2 ⊢ 𝑒1 𝑒2 :𝜏2

Γ ∪ {𝑥 ↦→ 𝜏1} ⊢ 𝑒 :𝜏2 𝑥 ∉ Γ

Γ ⊢ _𝑥. 𝑒 :𝜏1 −◦ 𝜏2
Γ ∪ {𝑥 ↦→ 𝜏1} ⊢ 𝑒 :𝜏2 Γ unr 𝑥 ∉ Γ

Γ ⊢ _𝑥. 𝑒 :𝜏1 → 𝜏2

Γ ∪ {𝑓 ↦→ (𝜏1 → 𝜏2), 𝑥 ↦→ 𝜏1} ⊢ 𝑒 :𝜏2 Γ unr 𝑓 , 𝑥 ∉ Γ

Γ ⊢ rec 𝑓 𝑥 . 𝑒 :𝜏1 → 𝜏2

Γ ⊢ 𝑒 :𝜏ℓ
Γ ⊢ ⟨ℓ :𝑒⟩ :Σℓ∈𝐼 . 𝜏ℓ

Γ1 ⊥ Γ2 Γ1 ⊢ 𝑒 :Σℓ∈𝐼 . 𝜏ℓ ∀ℓ ∈ 𝐼 . Γ2 ∪ {𝑥ℓ ↦→ 𝜏ℓ } ⊢ 𝑒ℓ :𝜏 ′ 𝑥ℓ ∉ Γ2 (𝐼 = ∅ =⇒ Γ2 = ∅)
Γ1 ∪ Γ2 ⊢ match 𝑒 with {⟨ℓ :𝑥ℓ⟩ ↦→ 𝑒ℓ ; . . .}ℓ∈𝐼 :𝜏 ′

Γ1 ⊥ · · · ⊥ Γ𝑛 consistent(𝐿0, 𝐿1, . . . , 𝐿𝑛) ∀𝑝 ∈ {1..𝑛}. Γ𝑝 ⊢ 𝑒𝑝 :𝐿𝑝 −◦ 1

Γ1 ∪ · · · ∪ Γ𝑛 ⊢ fork(𝑒1, . . . , 𝑒𝑛) :𝐿0
Γ ⊢ 𝑒 :End

Γ ⊢ close(𝑒) :1

Γ1 ⊥ Γ2 Γ1 ⊢ 𝑒1 : ![𝑝]{ℓ : 𝜏ℓ . 𝐿ℓ }ℓ∈𝐼 Γ2 ⊢ 𝑒2 :𝜏ℓ
Γ1 ∪ Γ2 ⊢ send[𝑝] (𝑒1, ℓ :𝑒2) :𝐿ℓ

Γ ⊢ 𝑒 :?[𝑝]{ℓ : 𝜏ℓ . 𝐿ℓ }ℓ∈𝐼
Γ ⊢ receive[𝑝] (𝑒) :Σℓ∈𝐼 . 𝜏ℓ × 𝐿ℓ

Γ ⊢ 𝑒 :𝜋 (𝐿)
Γ ⊢ redirect[𝜋] (𝑒) :𝐿

Fig. 3. Selected MPGV typing rules.

Operationally, this composes the translation vector of 𝑐 with 𝜋 :

redirect[𝜋1] (#[(𝑠, 𝑝), 𝜋2]) = #[(𝑠, 𝑝), 𝜋2 ◦ 𝜋1]

For details, see Figure 2. This operation is required to make multiparty sessions formally subsume
binary sessions (§4), but is independently useful for modular programmingwith first-class endpoints
(§2.4), because it allows the programmer to pass endpoints to destinations where different endpoint
numbers are expected in the type signature.

3.2 Static Type System
The functional layer of MPGV features base types, products, closures, sums, and equi-recursive
types [Crary et al. 1999]. The message-passing layer of MPGV features multiparty sessions with
n-ary choice. Formally the types of MPGV are given by:

𝜏 ∈ Type ::=
(𝑐𝑜𝑖𝑛𝑑)

1 | N | 𝜏 × 𝜏 | 𝜏 −◦ 𝜏 | 𝜏 → 𝜏 | Σℓ∈𝐼 . 𝜏ℓ | 𝐿

𝐿 ∈ LType ::=
(𝑐𝑜𝑖𝑛𝑑)

![𝑝]{ℓ : 𝜏ℓ . 𝐿ℓ }ℓ∈𝐼 | ?[𝑝]{ℓ : 𝜏ℓ . 𝐿ℓ }ℓ∈𝐼 | End

The functional types 𝜏 and local session types 𝐿 are mutually defined: functional types occur as
messages in local types, and local types are functional types. To support equi-recursive types, we
defineType and LType coinductively, allowing types to refer to themselves [Crary et al. 1999; Gay
et al. 2020; Jacobs et al. 2022a; Castro-Perez et al. 2021; Keizer et al. 2021]. Mutually recursive
functional types and local types can be constructed using corecursion in the meta logic (i.e., Coq), so

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 107. Publication date: August 2022.

107:12 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers

there is no explicit recursion operator.We use= to denote coinductive equivalence (i.e., bisimulation).
The typing rules for MPGV’s judgment Γ ⊢ 𝑒 :𝜏 are displayed in Figure 3.

3.2.1 Unrestricted Types. We have linear function types 𝜏1 −◦ 𝜏2, which must be used exactly once,
and whose lambda expressions can capture linear data. We also have unrestricted functions 𝜏1 → 𝜏2,
which can be used any number of times (incl. zero times), but whose lambda expressions cannot
capture linear data. We define the subsetUType ⊆ Type of unrestricted types as:

𝜏 ∈ UType ::=
(𝑐𝑜𝑖𝑛𝑑)

1 | N | 𝜏 × 𝜏 | 𝜏 → 𝜏 | Σℓ∈𝐼 . 𝜏ℓ

Note that 𝜏1 → 𝜏2 is always unrestricted, even if 𝜏1 and 𝜏2 are restricted, because closures of
unrestricted function type cannot contain endpoints.

To support linear and unrestricted types in the typing judgment, context disjointness Γ1 ⊥ Γ2 is
defined such that if Γ1 and Γ2 both contain variable 𝑥 , the two contexts must assign equal types
to 𝑥 (i.e., Γ1 (𝑥) = Γ2 (𝑥)), and the type they assign to 𝑥 must be an unrestricted type. This ensures
that the union operation Γ1 ∪ Γ2 on contexts is well-defined whenever it is used in the typing rules
(for instance, if Γ1 = {𝑥 : N;𝑦 : N} and Γ2 = {𝑦 : N}, then Γ1 ∪ Γ2 = {𝑥 : N;𝑦 : N}). A context is
unrestricted if all its types are unrestricted.

3.2.2 Local Types. Local types describe the protocol that an endpoint 𝑐 must follow:
• If 𝑐 : ![𝑝]{ℓ : 𝜏ℓ . 𝐿ℓ }ℓ∈𝐼 then the next action on 𝑐 has to be send[𝑝] (𝑐, ℓ : 𝑣), and 𝑣 : 𝜏ℓ and the
continuation type 𝐿ℓ of 𝑐 is determined by the sent label ℓ ∈ 𝐼 .

• If 𝑐 : ?[𝑝]{ℓ : 𝜏ℓ . 𝐿ℓ }ℓ∈𝐼 then the next action on 𝑐 has to be receive[𝑝] (𝑐), and the received label
ℓ ∈ 𝐼 determines the type 𝜏ℓ of the value received and the next type 𝐿ℓ of 𝑐 .

• If 𝑐 : End then the next action on 𝑐 must be close(𝑐).
Due to linear typing of endpoints, we must use each endpoint variable exactly once. Like in other
session typed languages, this is necessary for type safety.
For the typing rule of redirect (if 𝑒 : 𝜋 (𝐿), then redirect[𝜋] (𝑒) : 𝐿), we define the action of a

renaming 𝜋 (not necessarily injective) on local types:

𝜋 (![𝑝]{ℓ : 𝜏ℓ . 𝐿ℓ }ℓ∈𝐼) ≜ ![𝜋 (𝑝)]{ℓ : 𝜏ℓ . 𝜋 (𝐿ℓ)}ℓ∈𝐼
𝜋 (?[𝑝]{ℓ : 𝜏ℓ . 𝐿ℓ }ℓ∈𝐼) ≜ ?[𝜋 (𝑝)]{ℓ : 𝜏ℓ . 𝜋 (𝐿ℓ)}ℓ∈𝐼

𝜋 (End) ≜ End

3.2.3 Global Types and Projections. The typing rule for fork (Figure 3) requires a session’s local
types 𝐿0, . . . , 𝐿𝑛 to be consistent. Consistency means, for instance, that if participant 𝑝 sends a value
of type 𝜏 to participant 𝑞, then 𝑞 is expecting to receive a value of type 𝜏 from 𝑝 at that point in the
protocol. Traditionally, consistency is defined by the existence of a global type that governs the
communication between all participants in a session. Global types are of the form:

𝐺 ∈ GType ::=
(𝑐𝑜𝑖𝑛𝑑)

[𝑝1 → 𝑝2]{ℓ : 𝜏ℓ . 𝐺ℓ }ℓ∈𝐼 | End

A global type [𝑝1 → 𝑝2]{ℓ : 𝜏ℓ . 𝐺ℓ }ℓ∈𝐼 expresses that the first action in the protocol is for participant
𝑝1 to send a message to 𝑝2, such that if the label in the message is chosen to be ℓ , then the payload
of the message has to have type 𝜏ℓ , and then the global protocol continues as 𝐺ℓ . Note that “global”
in our use of “global type” means global with respect to a session, not the whole program—each
different session started by a fork can have its own global type.
Local types can be extracted from global types by a projection judgment 𝐺 ⇂ 𝑝 = 𝐿, indicating

that participant 𝑝’s local type is 𝐿 if the global type is 𝐺 . The judgment is coinductively defined in
Figure 4. The first two rules state how the sender and receiver of a message in the global type are

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 107. Publication date: August 2022.

Multiparty GV: Functional Multiparty Session Types with Certified Deadlock Freedom 107:13

𝑟 ≠ 𝑞 ∀ℓ ∈ 𝐼 . 𝐺ℓ ⇂ 𝑟 = 𝐿ℓ

[𝑟 → 𝑞]{ℓ : 𝜏ℓ . 𝐺ℓ }ℓ∈𝐼 ⇂ 𝑟 = ![𝑞]{ℓ : 𝜏ℓ . 𝐿ℓ }ℓ∈𝐼
·· · ··

𝑟 ≠ 𝑝 ∀ℓ ∈ 𝐼 . 𝐺ℓ ⇂ 𝑟 = 𝐿ℓ

[𝑝 → 𝑟]{ℓ : 𝜏ℓ . 𝐺ℓ }ℓ∈𝐼 ⇂ 𝑟 = ?[𝑝]{ℓ : 𝜏ℓ . 𝐿ℓ }ℓ∈𝐼
·· · ··

𝑟 ∉ {𝑝, 𝑞} ∀ℓ ∈ 𝐼 . 𝐺ℓ ⇂ 𝑟 = 𝐿 𝑟 guards 𝐺ℓ 𝐼 ≠ ∅
[𝑝 → 𝑞]{ℓ : 𝜏ℓ . 𝐺ℓ }ℓ∈𝐼 ⇂ 𝑟 = 𝐿

·· · ··
𝑟 ∉ participants(𝐺)

𝐺 ⇂ 𝑟 = End
·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ··

𝑟 ∈ {𝑝, 𝑞}
𝑟 guards [𝑝 → 𝑞]{ℓ : 𝜏ℓ . 𝐺ℓ }ℓ∈𝐼

∀ℓ ∈ 𝐼 . 𝑟 guards 𝐺ℓ

𝑟 guards [𝑝 → 𝑞]{ℓ : 𝜏ℓ . 𝐺ℓ }ℓ∈𝐼

Fig. 4. Coinductive projection rules (dotted line) and inductive guardedness rules (solid line).

projected. The third rule states how other participants not involved in the message are projected.
For participants not involved in the message, we require that participant to guard the rest of the
global type, which means that the participant occurs in the global type at finite depth along every
branch. The fourth rule states that if a participant does not occur in the global type, then it projects
to End. Our projection rules are similar to those of Zooid [Castro-Perez et al. 2021].
Traditionally, consistency consistent(𝐿0, . . . , 𝐿𝑛) is expressed in terms of a global type 𝐺 such

that 𝐺 ⇂ 0 = 𝐿0, . . . ,𝐺 ⇂ 𝑛 = 𝐿𝑛 , and 𝐺 ⇂𝑚 = End for𝑚 > 𝑛. In §6 we develop, inspired by Scalas
and Yoshida [2019a], a more permissive notion of consistency that is independent of a global type,
permitting deadlock-free scenarios for which no appropriate global type can be found. §6.2 then
shows that the traditional notion of consistency based on global types implies our new notion.

4 TRANSLATION FROM BINARY TO MULTIPARTY
We show that a GV-style binary session-typed language falls out as a special mode of use of our
multiparty language MPGV by giving a type-preserving translation of binary channel operations
into MPGV. We consider this an important benchmark, because whereas traditional multiparty
systems do support such a translation—the output of the translation does not necessarily fall into
the fragment of the language where the type system ensures deadlock freedom if whole programs
instead of single sessions are considered. There are two main obstacles in existing systems: (1) after
translation, participant numbers do not match up, and (2) in systems such as Coppo et al. [2013];
Bettini et al. [2008]; Coppo et al. [2016], deadlock-freedom mechanisms such as orders/priorities
prevent programs from being translated because these orders are absent in the source program, so
after translation one must come up with an order on sessions. The latter is not always possible if
sessions are used in a different orders in different branches of a conditional. Finally, translation of
an expressive language such as GV requires the target language to support storing endpoints in
data structures, as GV supports this. MPGV overcomes all these obstacles.
We start by giving a short introduction to binary session types, and then show how they can

be translated into our language, making use of redirect. Binary session types are equivalent to
local types without participant annotations. The annotations are not necessary in the binary case,
because there is only one other participant to communicate with:

𝐵 ∈ BType ::=
(𝑐𝑜𝑖𝑛𝑑)

!{ℓ : 𝜏ℓ . 𝐵ℓ }ℓ∈𝐼 | ?{ℓ : 𝜏ℓ . 𝐵ℓ }ℓ∈𝐼 | End

The operations for binary channels are defined in terms of multiparty operations as follows:

fork𝐵 (𝑒) ≜ redirect[1 ↦→ 0] (fork(𝑒)) send𝐵 (𝑒1, ℓ :𝑒2) ≜ send[0] (𝑒1, ℓ :𝑒2)
close𝐵 (𝑒) ≜ close(𝑒) receive𝐵 (𝑒) ≜ receive[0] (𝑒)

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 107. Publication date: August 2022.

107:14 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers

Γ ⊢ 𝑒 :J𝐵K𝐿 −◦ 1

Γ ⊢ fork𝐵 (𝑒) :J𝐵K𝐿

Γ ⊢ 𝑒 :JEndK𝐿
Γ ⊢ close𝐵 (𝑒) :1

Γ1 ⊥ Γ2 Γ1 ⊢ 𝑒1 :J!{ℓ : 𝜏ℓ . 𝐵ℓ }ℓ∈𝐼 K𝐿 Γ2 ⊢ 𝑒2 :𝜏ℓ
Γ1 ∪ Γ2 ⊢ send𝐵 (𝑒1, ℓ :𝑒2) :J𝐵ℓK𝐿

Γ ⊢ 𝑒 :J?{ℓ : 𝜏ℓ . 𝐵ℓ }ℓ∈𝐼 K𝐿
Γ ⊢ receive𝐵 (𝑒) :Σℓ∈𝐼 . 𝜏ℓ × J𝐵ℓK𝐿

Fig. 5. Derivable typing rules for binary session types.

We do a binary spawn using the n-ary fork, then the local type of the endpoint of the spawner gets
annotated with 1’s (because it is communicating with endpoint 1) and the local type of the endpoint
of the forked-off thread gets annotated with 0’s (because it is communicating with endpoint 0). In
order to implement a type-preserving translation, we redirect all annotations to 0. This enables us
to canonically translate binary session types 𝐵 to multiparty local types J𝐵K𝐿 by using 𝑝 = 0 for
every participant annotation:

J!{ℓ : 𝜏ℓ . 𝐵ℓ }ℓ∈𝐼 K𝐿 ≜ ![0]{ℓ : 𝜏ℓ . J𝐿ℓK𝐿}ℓ∈𝐼
J?{ℓ : 𝜏ℓ . 𝐵ℓ }ℓ∈𝐼 K𝐿 ≜ ?[0]{ℓ : 𝜏ℓ . J𝐿ℓK𝐿}ℓ∈𝐼

JEndK𝐿 ≜ End

We then prove that the usual typing rules for binary session types are derivable in our system. For
fork, this amounts to defining a global type J𝐵K𝐺 to govern the binary interaction:

J!{ℓ : 𝜏ℓ . 𝐵ℓ }ℓ∈𝐼 K𝐺 ≜ [0 → 1]{ℓ : 𝜏ℓ . J𝐵ℓK𝐺 }ℓ∈𝐼
J?{ℓ : 𝜏ℓ . 𝐵ℓ }ℓ∈𝐼 K𝐺 ≜ [1 → 0]{ℓ : 𝜏ℓ . J𝐵ℓK𝐺 }ℓ∈𝐼

JEndK𝐺 ≜ End

After redirecting, the projections have the right local types for 𝐵 and the dual 𝐵 (flips all ? with !
and vice versa):

Lemma 4.1. J𝐵K𝐺 ⇂ 0 = 𝜋−1 (J𝐵K𝐿) and J𝐵K𝐺 ⇂ 1 = J𝐵K𝐿

Using this lemma and translation of types, we can prove that the binary typing rules for
fork𝐵, send𝐵, receive𝐵 and close𝐵 are derivable (Figure 5).

This section shows that MPGV supports the full power of GV-style binary session types, including
treatment of sessions as first-class data and dynamic spawning of sessions. Note that redirecting is
crucial: without it we are not able to do a type-preserving translation, because local types ![0] and
?[0] are incompatible with ![1] and ?[1].

5 THE DEADLOCK AND LEAK FREEDOM THEOREM
MPGV guarantees strong properties for well-typed programs, while supporting dynamic spawning,
session interleaving, and first-class endpoints. These properties are:
Type safety: The only way for a thread to get stuck is by blocking to receive from an empty buffer.
Session fidelity: The values sent to and received from buffers match the types in the protocol.
Global progress: Configurations of a well-typed initial program are either final or can take a step.
Deadlock freedom: No subset of the threads get stuck by waiting for each other.
Memory leak freedom: All data always remains reachable.

Ideally, we would like to capture these properties in a single theorem that subsumes them all. As
a first step, we formulate global progress as follows:

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 107. Publication date: August 2022.

Multiparty GV: Functional Multiparty Session Types with Certified Deadlock Freedom 107:15

Theorem 5.1 (Global progress). If ∅ ⊢ 𝑒 :1, and ([𝑒], ∅) {∗
cfg (®𝑒, ℎ), then:

(1) there exists (®𝑒′, ℎ′) such that (®𝑒, ℎ) {cfg (®𝑒′, ℎ′), or
(2) ®𝑒𝑖 = () for all 𝑖 ∈ dom(®𝑒) and ℎ = ∅.

This theorem rules out whole-program deadlocks and ensures that all buffers have been correctly
deallocated when the program finishes. However, this theorem does not guarantee anything as long
as there is still a single thread that can step. Thus it does not guarantee local deadlock freedom, nor
memory leak freedom while the program is still running. Moreover, it does not even guarantee
type safety: a situation in which a thread is stuck on a type error is not ruled out by this theorem
as long as there is another thread that can still step. We therefore state partial deadlock freedom
and memory leak freedom theorems, but we strengthen both so that they become equivalent. We
use the definitions of partial deadlock and memory leak freedom of Jacobs et al. [2022a] and apply
them to MPGV. We need the following notions:
• The set 𝑣 ∈ V ::= Thread(𝑖) | Session(𝑠) ranging over possible threads and sessions.
• The function refs(®𝑒,ℎ) (𝑣) ⊆ V giving the set of sessions that 𝑣 references.
• The predicate blocked(®𝑒,ℎ) (𝑣1, 𝑣2) stating that thread 𝑣1 = Thread(𝑖) is blocked on session
𝑣2 = Session(𝑠).

• The function active(®𝑒, ℎ) ⊆ V giving the set of active threads and sessions in the configuration.
Using these notions, we strengthen partial deadlock freedom to incorporate aspects of memory
leak freedom.

Definition 5.2 (Partial deadlock/leak). Given a configuration (®𝑒, ℎ), a subset 𝑆 ⊆ V of the threads
and sessions is in a partial deadlock/leak if the following conditions hold:
(1) We have ∅ ⊂ 𝑆 ⊆ active(®𝑒, ℎ).
(2) For all threads Thread(𝑖) ∈ 𝑆 , the expression 𝑒𝑖 cannot step in the heap ℎ.
(3) If Thread(𝑖) ∈ 𝑆 and blocked(®𝑒,ℎ) (Thread(𝑖), Session(𝑠)), then Session(𝑠) ∈ 𝑆 .
(4) If Session(𝑠) ∈ 𝑆 and Session(𝑠) ∈ refs(®𝑒,ℎ) (𝑣), then 𝑣 ∈ 𝑆 .
Definition 5.3 (Partial deadlock/leak freedom). A configuration (®𝑒, ℎ) is deadlock/leak free if no
𝑆 ⊆ V is in a partial deadlock/leak in (®𝑒, ℎ).

Conversely, we strengthen memory leak freedom (i.e., full reachability) to incorporate aspects of
deadlock freedom.

Definition 5.4 (Reachability). We inductively define the threads and sessions reachable in (®𝑒, ℎ):
(1) Thread(𝑖) is reachable if either

• the expression 𝑒𝑖 can step in the heap ℎ, or
• there exists an 𝑠 such that Session(𝑠) is reachable and blocked(®𝑒,ℎ) (Thread(𝑖), Session(𝑠)).

(2) Session(𝑠) is reachable if there exists a reachable 𝑣 such that Session(𝑠) ∈ refs(®𝑒,ℎ) (𝑣).
Definition 5.5 (Full reachability). A configuration (®𝑒, ℎ) is fully reachable if all 𝑣 ∈ active(®𝑒, ℎ) are
reachable in (®𝑒, ℎ).

As in Jacobs et al. [2022a]’s language for binary sessions, the strengthened versions of deadlock
freedom and full reachability are equivalent, and well-typedMPGV programs satisfy both properties:

Theorem 5.6. A configuration (®𝑒, ℎ) is deadlock/leak free if and only if it is fully reachable.

Theorem 5.7. If ∅ ⊢ 𝑒 :1 and ([𝑒], ∅) {cfg (®𝑒, ℎ), then (®𝑒, ℎ) is fully reachable and deadlock/leak
free.

The final theorem encompasses type safety, session fidelity, deadlock freedom, and memory leak
freedom. Global progress (Theorem 5.1) also follows as a corollary from the final theorem.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 107. Publication date: August 2022.

107:16 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers

6 EXTENSION: CONSISTENCYWITHOUT GLOBAL TYPES
Inspired by Scalas and Yoshida [2019a,b], we define a notion of consistency that does not rely on
global types. This notion of consistency plays an important role in our proof of deadlock freedom
(§7), but is also more flexible. It is more flexible in the sense that consistent(𝐿0, . . . , 𝐿𝑛) (premise of
fork in Figure 3) may hold even if no global type exists whose projections are 𝐿1, . . . , 𝐿𝑛 . For example,
there exists no global type for the local types 𝐿0 = ![1]N.?[1]N.End and 𝐿1 = ![0]N.?[0]N.End
because they both start with a send. Nevertheless, it would be safe and deadlock free to allow this
protocol, given an asynchronous semantics.1 The more flexible notion of consistency we define in
§6.1 does allow this protocol. In §6.2 we show that the existence of a global type for local types
implies our flexible notion of consistency.

6.1 Defining Consistency without Global Types
At a high level, we define consistent(𝐿0, . . . , 𝐿𝑛) as follows:

“The local types 𝐿0, . . . , 𝐿𝑛 of a session are consistent if no deadlock can occur within
the session when considering all possible interleavings of participant actions, assuming
that each participant 𝑝 follows its respective local type 𝐿𝑝 .”

Our goal is to define this notion solely as a property of the local types 𝐿0, . . . , 𝐿𝑛 , so that consistency
of a session’s local types can be proven without considering other sessions. To do so, we define the
notion of shadow buffers:

�̂� ∈ ShadowBuf ≜ Participant fin−⇀ (Participant fin−⇀ List(Label ×Type))
Shadow buffers are similar to the physical buffers in the heap, but there are two differences. First,
whereas the physical buffers contain pairs ⟨ℓ :𝑣⟩ of labels and values, shadow buffers contain
pairs ⟨ℓ :𝜏⟩ of labels and types. Second, whereas the heap concerns all sessions, shadow buffers
only concern a single session. Hence, the heap ranges over endpoints (recall that Endpoint ≜
Session × Participant), but shadow buffers range over mere participants.
Shadow buffers allow us to simulate the local execution of a session on the abstract level. If all

the possible local executions allowed by a set of local types L : Participant fin−⇀ LType on a set of
shadow buffers �̂� are type safe and deadlock free, we say that �̂� is consistent with L, which we
denote by consistent(�̂�, L), and define as follows:

Definition 6.1. The judgment consistent(�̂�, L) is defined as the most permissive relation satisfying
the following properties:
(1) Consistency is preserved by sends, i.e., for every participant 𝑝 with L(𝑝) = ![𝑞]{ℓ : 𝜏ℓ . 𝐿ℓ }ℓ∈𝐼 ,

then consistent(push(𝑞, 𝑝, ⟨ℓ :𝜏ℓ⟩ , �̂�), L[𝑝 := 𝐿ℓ]).
(2) Consistency is preserved by receives, i.e., for every participant 𝑞 with L(𝑞) = ?[𝑝]{ℓ : 𝜏ℓ . 𝐿ℓ }ℓ∈𝐼 ,

and pop(𝑞, 𝑝, �̂�) = (⟨ℓ :𝜏⟩ , �̂� ′), then ℓ ∈ 𝐼 , and consistent(�̂� ′, L[𝑞 := 𝐿ℓ]), and 𝜏 = 𝜏ℓ .
(3) Consistency is preserved by channel closure, i.e., for every participant 𝑝 with L(𝑝) = End, then

consistent(�̂�\{𝑝}, L\{𝑝}).
(4) Either all buffers have been deallocated (�̂� = ∅) or there is a participant 𝑞 such that 𝑞’s local

type L(𝑞) is a send or a close, or L(𝑞) is a receive and the corresponding buffer contains a value,
i.e., pop(𝑞, 𝑝, �̂�) = (⟨ℓ :𝜏⟩ , �̂� ′) for some label ℓ , type 𝜏 , and new set of shadow buffers �̂� ′.

(5) For each participant there is a corresponding set of buffers and vice versa, i.e., dom(L) = dom(�̂�).

Note that the cases for the preservation of consistent(�̂�, L) under the sends, receives, and channel
closure refer to a recursive occurrence consistent(�̂� ′, L′) for some �̂� ′ and L′. Since we consider
1There exist other extensions of (multiparty) session types that allow for a more flexible notion of consistency. In particular,
session-type systems with asynchronous subtyping also support this example [Ghilezan et al. 2021; Mostrous et al. 2009].

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 107. Publication date: August 2022.

Multiparty GV: Functional Multiparty Session Types with Certified Deadlock Freedom 107:17

the most permissive relation, these recursive occurrences should be interpreted coinductively—we
use Coq’s CoInductive keyword in the mechanization.
The first three properties are used to show that the channel operations are type safe and the

resulting state is again consistent. The fourth property is used to show deadlock freedom. The fifth
property is required for technical reasons because we support the possibility of some participants
deallocating their buffers while other participants are continuing to communicate with each other.
With this at hand, we define the new consistency predicate used in the fork typing rule:

Definition 6.2. We define consistent(®𝐿) as consistent(init(length(®𝐿)), ®𝐿), where init(𝑛) creates 𝑛
empty buffers, and the list ®𝐿 is converted into a map in the natural way.

Note that we need to use the finite map representation because some participants can close their
channel before others (see Item 3 in Definition 6.1), and then they disappear from L (lists do not
allow gaps in the middle, whereas finite maps do).

6.2 Global Types Imply Consistency
The goal of this section is to show that if there is a global type for a set of local types, then the
local types are consistent in the sense of the preceding section:

Theorem 6.3. If there is a global type𝐺 with𝑛+1 participants such that𝐺 ⇂ 0 = 𝐿0, . . . ,𝐺 ⇂ 𝑛 = 𝐿𝑛 ,
then consistent(𝐿0, . . . , 𝐿𝑛).

This lemma shows that we did not lose anything by using the more flexible notion of consistency
without global types—the programs we are able to type check with the more flexible notion of
consistency are a superset of the programs we are able to type check using global types.
We cannot prove Theorem 6.3 directly using coinduction, because the coinductive conclusion

is not general enough. We need a more general property that involves the consistency judgment
consistent(�̂�, L) for an arbitrary set of shadow buffers �̂� . Our generalized property (Lemma 6.4)
makes use of the notion runtime global types, inspired by the work of Castro-Perez et al. [2021].

Runtime global types. To model the state of a global type during an interaction in which some
messages have already been sent but not yet received, we define runtime global types as:

𝑅 ∈ RType ::=
(𝑖𝑛𝑑)

[𝑝1
ℓ?→ 𝑝2]{ℓ : 𝜏ℓ . 𝑅ℓ }ℓ∈𝐼 | Cont 𝐺

Runtime global types differ from ordinary global types (§3.2.3) in three aspects:
(1) Operations in runtime global types have an optional label ℓ on the arrow. If no label is present

(i.e., [𝑝1 → 𝑝2]{ℓ : 𝜏ℓ . 𝑅ℓ }ℓ∈𝐼), then both the send and receive remain to happen. If a label ℓ is
present (i.e., [𝑝1

ℓ→ 𝑝2]{ℓ : 𝜏ℓ . 𝑅ℓ }ℓ∈𝐼), then the send portion (with label ℓ) of the operation has
already happened, but the receive is still pending.

(2) Runtime global types are defined inductively rather than coinductively, because only finitely
many messages have been sent at any given point in time.

(3) Instead of having End, they have Cont 𝐺 , indicating that the protocol continues as ordinary
global type 𝐺 .

Runtime local type projections. The projections 𝑅 ⇂ 𝑝 = 𝐿 of runtime global types onto local
types can be found in Figure 6. These rules are inductively defined. Intuitively, when an operation
[𝑝 ℓ→ 𝑞]{ℓ : 𝜏ℓ . 𝑅ℓ }ℓ∈𝐼 ⇂ 𝑟 occurs in the runtime global type, then the projection onto 𝑝 ignores
the operation and continues with 𝑅ℓ because the send by 𝑝 with label ℓ has already happened.
However, the projection onto 𝑞 in this case still has to take the receive part of this operation into

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 107. Publication date: August 2022.

107:18 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers

𝑞 ≠ 𝑟 ∀ℓ ∈ 𝐼 . 𝑅ℓ ⇂ 𝑟 = 𝐿ℓ
[𝑟 → 𝑞]{ℓ : 𝜏ℓ . 𝑅ℓ } ⇂ 𝑟 = ![𝑞]{ℓ : 𝜏ℓ . 𝐿ℓ }

𝑝 ≠ 𝑟 ∀ℓ ∈ 𝐼 . 𝑅ℓ ⇂ 𝑟 = 𝐿ℓ

[𝑝 ℓ?→ 𝑟]{ℓ : 𝜏ℓ . 𝑅ℓ } ⇂ 𝑟 = ?[𝑝]{ℓ : 𝜏ℓ . 𝐿ℓ }

𝑟 ∉ {𝑝, 𝑞} ∀ℓ ∈ 𝐼 . 𝑅ℓ ⇂ 𝑟 = 𝐿 𝐼 ≠ ∅
[𝑝 → 𝑞]{ℓ : 𝜏ℓ . 𝑅ℓ } ⇂ 𝑟 = 𝐿

𝑞 ≠ 𝑟 𝑅ℓ ⇂ 𝑟 = 𝐿

[𝑝 ℓ→ 𝑞]{ℓ : 𝜏ℓ . 𝑅ℓ } ⇂ 𝑟 = 𝐿

𝐺 ⇂ 𝑟 = 𝐿

Cont 𝐺 ⇂ 𝑟 = 𝐿

pop(𝑞, 𝑝, �̂�) = ⊥ ∀ℓ . 𝑅ℓ ⇂⇂ �̂�
[𝑝 → 𝑞]{ℓ : 𝜏ℓ . 𝑅ℓ } ⇂⇂ �̂�

pop(𝑞, 𝑝, �̂�) = (⟨ℓ :𝜏ℓ⟩ , �̂� ′) 𝑅ℓ ⇂⇂ �̂�
′

[𝑝 ℓ→ 𝑞]{ℓ : 𝜏ℓ . 𝑅ℓ } ⇂⇂ �̂�

�̂� = ∅
Cont 𝐺 ⇂⇂ �̂�

Fig. 6. Projections of runtime global types: (1) local type projections 𝑅 ⇂ 𝑝 = 𝐿, and (2) shadow buffer
projections 𝑅 ⇂⇂ �̂� (inductive).

account, because the receive has not happened yet. The other cases are similar to the projections
for ordinary global types (Figure 3), and ensure that the protocol remains well-formed.

Runtime buffer projections. We also define the judgment 𝑅 ⇂⇂ �̂� , which says that the messages
in the runtime global type 𝑅 correspond to the shadow buffers �̂� .

Runtime global types imply consistency. Using the notion of runtime global type and runtime
projections, we are able to show the following lemma:

Lemma 6.4. The judgment consistent(�̂�, L) holds if there exists a runtime global type 𝑅 for which
the following four conditions hold: (1) 𝑅 ⇂⇂ �̂� (2) ∀𝑝. 𝑅 ⇂ 𝑝 = 𝐿(𝑝) (3) participants(𝑅) ⊆ dom(L)
(4) ∀𝑝. if �̂� (𝑝) = ⊥ then 𝑝 ∉ dom(L) else dom(L) ⊆ dom(�̂� (𝑝)).

The lemma is proved using coinduction, and relies on a series of auxiliary lemmas (see the Coq
development for details [Jacobs et al. 2022b]). Once we have this lemma, Theorem 6.3 follows by
relating projection of runtime global types to projection of ordinary global types.

7 PROOF OF DEADLOCK AND LEAK FREEDOM
We give an overview of the proof of our main result, Theorem 5.7. The proof is quite technical,
but since all parts have been mechanized in Coq [Jacobs et al. 2022b], one can trust the theorems
independent of the pen-and-paper description of the proof. We hope to provide enough insights
into the proof to make our results reproducible and extensible.

The high level structure of the proof is as follows:
• We define an invariant on the runtime configuration, which states (1) that everything in the
configuration is well-typed and that the buffer contents are consistent with respect to the local
types of each channel endpoint, and (2) that the topology of the configuration is acyclic.

• We prove that the invariant is preserved by steps of the operational semantics (“preservation”).
• We prove that configurations that satisfy the invariant cannot be in a deadlock (“progress”).
To deal with linearity and acyclicity we use the connectivity graph framework of Jacobs et al.

[2022a], which provides a couple of features to make our proof feasible. First, it provides a generic
construction to define the invariant—it allows us to provide local invariants for threads and channels,
which the framework then lifts to an invariant for whole runtime configurations. Second, it makes
use of separation logic to hide reasoning about linearity. Third, it provides generic reasoning
principles to prove the preservation (of acyclicity and typing) and progress parts of the proof.
Fourth, it is implemented as a library in Coq, so it allows us to mechanize our proofs.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 107. Publication date: August 2022.

Multiparty GV: Functional Multiparty Session Types with Certified Deadlock Freedom 107:19

𝑃,𝑄 ∈ sProp ≜ (V fin−⇀ E) → Prop

(Emp) (Σ) ≜ (Σ = ∅)
(False) (Σ) ≜ False

(True) (Σ) ≜ True

(⌜𝜙⌝) (Σ) ≜ 𝜙 ∧ (Σ = ∅)
(own(Σ′)) (Σ) ≜ (Σ = Σ′)

(� 𝑃) (Σ) ≜ 𝑃 (∅) ∧ Σ = ∅

V ::= Thread(𝑖) | Session(𝑠)
E ≜ Participant × LType

Σ ∈ V fin−⇀ E

(𝑃 ∨𝑄) (Σ) ≜ 𝑃 (Σ) ∨𝑄 (Σ)
(𝑃 ∧𝑄) (Σ) ≜ 𝑃 (Σ) ∧𝑄 (Σ)

(∃𝑥 . 𝑃 (𝑥)) (Σ) ≜ ∃𝑥 . 𝑃 (𝑥) (Σ)
(∀𝑥 . 𝑃 (𝑥)) (Σ) ≜ ∀𝑥 . 𝑃 (𝑥) (Σ)

(𝑃 ∗𝑄) (Σ) ≜ ∃Σ1Σ2. dom(Σ1) ∩ dom(Σ2) = ∅ ∧ Σ = Σ1 ⊎ Σ2 ∧ 𝑃 (Σ1) ∧𝑄 (Σ2)
(𝑃 −∗ 𝑄) (Σ) ≜ ∀Σ′ .

(
dom(Σ) ∩ dom(Σ′) = ∅ ∧ 𝑃 (Σ′)

)
⇒ 𝑄 (Σ ⊎ Σ′)

Fig. 7. The definition of the separation logic connectives.

At the high-level, the structure of our proof and our use of the connectivity framework is similar
to Jacobs et al. [2022a]’s proof for binary session types. To use the framework to obtain the invariant
for configurations (§7.3), we first define a runtime type system for expressions to express the local
invariant for threads (§7.1), and define a local invariant for the buffers that back a session (§7.2).
The new element of our proof is handling multiparty instead of binary sessions, for which we make
use of our notion of shadow buffers (§6).
With the invariant for configurations at hand, we prove that this invariant holds for the initial

configurations and is preserved by the operational semantics (§7.4). The new element is an ex-
tension of the connectivity graph framework to handle n-ary graph transformations to support
the multiparty case. To complete the proof, we show that the configuration invariant implies
Theorem 5.7, our main deadlock freedom theorem (§7.5).

7.1 Runtime Type System
The first step to define the invariant for configurations is to define a runtime typing judgment for
expressions. The runtime judgment differs from the static typing judgment (§3.2) in the sense that
it should account for channel literals #[𝑐, 𝜋] that appear after the execution of a fork. Traditionally,
this is done by extending the typing judgment Σ; Γ ⊢ 𝑒 : 𝜏 with an additional context Σ that keeps
track of the types of the channel literals (often called a heap typing).2 To avoid having to thread
through such this context everywhere, and having to deal with splitting conditions of this context
(due to linearity), we make use of separation logic [O’Hearn and Pym 1999; O’Hearn et al. 2001].
This follows the approach in the connectivity graph framework [Jacobs et al. 2022a], which in turn
is based on Rouvoet et al. [2020]’s use of separation logic to hide heap typings in intrinsically-typed
interpreters for linear languages in Agda.
Our runtime judgment Γ ⊨ 𝑒 : 𝜏 is formalized as a separation logic proposition sProp, i.e., a

predicate over heap typings Σ. The semantics of the separation logic connectives can be found
in Figure 7 and the rules of our runtime type system in Figure 8. Crucially, the use of separating
conjunction in the rules of n-ary constructs hides the splitting of the heap typing Σ, and the use of
own(𝑠 ↦→ (𝑝, 𝜋 (𝐿))) in the rule for endpoint literals #[(𝑠, 𝑝), 𝜋] makes sure the type of each literal
matches up with the heap typing Σ. Note that the runtime judgment Γ ⊨ 𝑒 :𝜏 is defined recursively
on the structure of 𝑒 . To assert that 𝑃 ∈ sProp is true, means to assert that 𝑃 (∅) holds.
2The actual type of Σ in Figure 7 also accounts for threads in addition to sessions. This is due to the use of the connectivity
graph framework, which we discuss in §7.3.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 107. Publication date: August 2022.

107:20 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers

⌜Γ unr⌝ ∗ own(𝑠 ↦→ (𝑝, 𝜋 (𝐿)))
Γ ⊨ #[(𝑠, 𝑝), 𝜋] :𝐿

--∗
�(Γ ∪ {𝑥 ↦→ 𝜏1} ⊨ 𝑒 :𝜏2) ∗ ⌜Γ unr⌝ ∗ ⌜𝑥 ∉ Γ⌝

Γ ⊨ _𝑥. 𝑒 :𝜏1 → 𝜏2
---∗

⌜Γ1 ⊥ · · · ⊥ Γ𝑛⌝ ∗ ⌜consistent(𝐿0, 𝐿1, . . . , 𝐿𝑛)⌝ ∗ [∗] 𝑝 ∈ {1..𝑛}. Γ𝑝 ⊨ 𝑒𝑝 :𝐿𝑝 −◦ 1

Γ1 ∪ · · · ∪ Γ𝑛 ⊨ fork(𝑒1, . . . , 𝑒𝑛) :𝐿0
---∗

Γ ⊨ 𝑒 :End

Γ ⊨ close(𝑒) :1
--∗

⌜Γ1 ⊥ Γ2⌝ ∗ Γ1 ⊨ 𝑒1 : ![𝑝]{ℓ : 𝜏ℓ . 𝐿ℓ }ℓ∈𝐼 ∗ Γ2 ⊨ 𝑒2 :𝜏ℓ
Γ1 ∪ Γ2 ⊨ send[𝑝] (𝑒1, ℓ :𝑒2) :𝐿ℓ

--∗

Γ ⊨ 𝑒 :?[𝑝]{ℓ : 𝜏ℓ . 𝐿ℓ }ℓ∈𝐼
Γ ⊨ receive[𝑝] (𝑒) :Σℓ∈𝐼 . 𝜏ℓ × 𝐿ℓ
---∗

Γ ⊨ 𝑒 :𝜋 (𝐿)
Γ ⊨ redirect[𝜋] (𝑒) :𝐿
--∗

Fig. 8. Selected separation logic runtime typing rules (recursive).

wf (®𝑒, ℎ) ≜ wf (wflocal(®𝑒,ℎ))
wf (𝑃) ≜ ∃𝐺 : Cgraph(V, E). ∀𝑣 ∈ V. 𝑃 (𝑣, in(𝐺, 𝑣)) (out(𝐺, 𝑣))

wflocal(®𝑒,ℎ) (𝑣,Δ) ≜

⌜Δ = ∅⌝ ∗ (∅ ⊨ 𝑒𝑖 :1) if 𝑣 = Thread(𝑖), 𝑖 < |®𝑒 |
⌜Δ = ∅⌝ if 𝑣 = Thread(𝑖), 𝑖 ≥ |®𝑒 |
∃L ∈ Participant fin−⇀ LType.

⌜Δ = toMultiset(L)⌝ ∗ consistent(ℎ |𝑠 , L)
if 𝑣 = Session(𝑠)

consistent(𝑄, L) ≜ ∃�̂� . ⌜consistent(�̂�, L)⌝ ∗𝑄 ∝ �̂�
𝑄 ∝ �̂� ≜ [∗]𝑄𝑝 ; �̂�𝑝 ∈ 𝑄 ; �̂� . [∗]𝑄𝑝𝑞 ; �̂�𝑝𝑞 ∈ 𝑄𝑝 ; �̂�𝑝 .

[∗] ⟨ℓ1 :𝑣⟩ ; ⟨ℓ2 :𝜏⟩ ∈ 𝑄𝑝𝑞 ; �̂�𝑝𝑞 . ⌜ℓ1 = ℓ2⌝ ∗ (∅ ⊨ 𝑣 :𝜏)

Fig. 9. Configuration invariant.

To prove the initialization lemma (Lemma 7.4), we state in separation logic that statically well-
typed expressions are well-typed in the runtime type system:

Lemma 7.1. ⌜Γ ⊢ 𝑒 :𝜏⌝ −∗ Γ ⊨ 𝑒 :𝜏

7.2 The Buffer Invariant
We now define an invariant consistent(𝑄, L) to express that the buffers 𝑄 for a given session 𝑠
are consistent with respect to a set of local types L : Participant fin−⇀ LType. The buffer invariant is
similar to the consistency judgment consistent(�̂�, L) we defined in §6.1, but it operates on physical
buffers 𝑄 (i.e., buffers with values) instead of shadow buffers �̂� (i.e., buffers with types):

𝑄 ∈ Buf ≜ Participant fin−⇀ (Participant fin−⇀ List(Label ×Val))
(We use the notation ℎ |𝑠 to obtain the buffers for a session 𝑠 from the heap ℎ.)

Since MPGV allows to send arbitrary data over channels, the values in buffers can themselves
contain channel literals. Hence, similar to the runtime typing judgment, the buffer invariant needs
to be indexed by a heap typing Σ, which we hide again by considering consistent(𝑄, L) to be a

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 107. Publication date: August 2022.

Multiparty GV: Functional Multiparty Session Types with Certified Deadlock Freedom 107:21

separation logic proposition sProp. The definition of consistent(𝑄, L) ∈ sProp can be found in
Figure 9. This definition contains two key ingredients. First, it makes use of consistent(�̂�, L) ∈ Prop
from §6 to specify that local types L are consistent with some (existentially quantified) shadow
buffers �̂� . Second, it makes use of the auxiliary definition 𝑄 ∝ �̂� ∈ sProp in Figure 9 to specify that
the labels in the physical buffers𝑄 are equal to those in the shadow buffers �̂� , and that the values in
the physical buffers 𝑄 have types determined by the corresponding entry in the shadow buffers �̂� .
(The notation [∗] 𝑥 ;𝑦 ∈ 𝑋 ;𝑌 . 𝑃 (𝑥,𝑦) in Figure 9 is an n-ary separating conjunction: it states that
the collections 𝑋,𝑌 (lists or finite maps) have the same domain, and gives 𝑃 (𝑋0, 𝑌0) ∗ · · · ∗𝑃 (𝑋𝑛, 𝑌𝑛),
where (𝑋𝑖 , 𝑌𝑖) are corresponding elements in the collections.)

The invariant consistent(𝑄, L) for physical buffers has preservation and initialization properties
paralleling to the rules of the consistency relation consistent(�̂�, L) for shadow buffers (Defini-
tions 6.1 and 6.2). Since consistent(𝑄, L) is a separation logic proposition, these properties are stated
using the separation logic connectives (and thus implicitly describe the threading and splitting of
the heap typing Σ).

Lemma 7.2. The buffer invariant is preserved by a sends, receives, and channel closure:
• If L(𝑝) = ![𝑞]{ℓ : 𝜏ℓ . 𝐿ℓ }ℓ∈𝐼 , then:
(∅ ⊨ 𝑣 :𝜏ℓ) ∗ consistent(𝑄, L) −∗ consistent(push(𝑞, 𝑝, ⟨ℓ :𝜏ℓ⟩ , 𝑄), L[𝑝 := 𝐿ℓ]).

• If L(𝑞) = ?[𝑝]{ℓ : 𝜏ℓ . 𝐿ℓ }ℓ∈𝐼 , and pop(𝑞, 𝑝, �̂�) = (⟨ℓ :𝜏⟩ , �̂� ′), then
consistent(𝑄, L) −∗ ⌜ℓ ∈ 𝐼⌝ ∗ consistent(𝑄 ′, L[𝑞 := 𝐿ℓ]) ∗ (∅ ⊨ 𝑣 :𝜏ℓ).

• If L(𝑝) = End, then consistent(𝑄, L) −∗ consistent(𝑄\{𝑝}, L\{𝑝}).

Lemma 7.3. If consistent(®𝐿), then Emp −∗ consistent(init(length(®𝐿)), ®𝐿).

7.3 The Configuration Invariant
The invariant wf (®𝑒, ℎ) for configurations (®𝑒, ℎ) ensures that every thread in ®𝑒 is well-typed, the
contents of the buffers ℎ |𝑠 for each session 𝑠 in ℎ are well-typed, the types of the channel literals
match up with the types of the channels, and the communication topology is acyclic. To define
this invariant, we instantiate the connectivity graph framework of Jacobs et al. [2022a] with the
runtime typing judgment from §7.1 and the buffer invariant from §7.2.

The first ingredient of the connectivity framework is the data typeCgraph(V, E), which represents
a directed graph with vertices ranging over the set V and edge labels ranging over the set E. This
graph should be acyclic in an undirected sense (i.e., the undirected erasure of the graph forms an
undirected unrooted forest). We instantiate V and E in Cgraph(V, E) as follows:

V ::= Thread(𝑖) | Session(𝑠) E ≜ Participant × LType

The second ingredient of the connectivity graph framework is a generic invariant wf (𝑃), which
lifts a local invariant predicate 𝑃 (𝑣,Δ) ∈ sProp to whole runtime configurations. The local predicate
𝑃 links the local configuration state of each vertex 𝑣 (i.e., the expression for a thread and the buffers
for a session) to the multiset Δ of labels on the incoming edges of vertex 𝑣 . Our instantiation
𝑃 (𝑣,Δ) ≜ wflocal(®𝑒,ℎ) (𝑣,Δ) is given in Figure 9. Intuitively, the local invariant for a thread (case
𝑣 = Thread(𝑖)) says that the expression 𝑒𝑖 of that thread is well-typed in the runtime type system
with respect to the local types on the outgoing edges of the thread’s vertex in the connectivity
graph. The local invariant for a session (case 𝑣 = Session(𝑠)) says that the buffers ℎ |𝑠 of that session
are well-typed with respect to the local types on the incoming edges of the session’s vertex in
the connectivity graph, where the endpoints stored in the buffers get their local types from the
outgoing edges. The invariant for the whole configuration wf (®𝑒, ℎ) says that there exists an acyclic
graph 𝐺 : Cgraph(V, E) such that the local invariant predicate holds for all 𝑣 ∈ V.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 107. Publication date: August 2022.

107:22 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers

𝑇

𝑣𝑛𝑣𝑖𝑣1

𝑇

𝑆

𝑇𝑛𝑇𝑖𝑇1

𝑣𝑛𝑣𝑖𝑣1

· · · · · ·

... ...

𝐿0

𝐿1
𝐿𝑖

𝐿𝑛fork(𝑣1, · · · , 𝑣𝑛) { 𝑐

𝑇 𝑆

𝑣

?
?
?

![𝑝]{ℓ : 𝜏ℓ . 𝐿ℓ }ℓ∈𝐼
𝑇 𝑆

𝑣

?
?
?

𝐿ℓ

send[𝑝] (𝑐, ℓ :𝑣) { 𝑐

𝑇 𝑆

𝑣

?
?
?

?[𝑝]{ℓ : 𝜏ℓ . 𝐿ℓ }ℓ∈𝐼
𝑇 𝑆

𝑣

?
?
?

𝐿ℓ

receive[𝑝] (𝑐){ ⟨ℓ : (𝑣, 𝑐)⟩

𝑇 𝑆

?
?
?

End
𝑇 𝑆

?
?
?

close(𝑐) { ()

Fig. 10. Graphical depiction of how multiparty interactions change the logical connectivity. Blue circles are
multiparty sessions, brown squares are threads. A blue circle abstracts over the 𝑛 × 𝑛 communication paths
among the 𝑛 session participants, where each endpoint has buffers for incoming messages from every other
endpoint. An edge from 𝑇 to 𝑆 indicates that thread 𝑇 has an endpoint of session 𝑆 . An edge from a session
𝑆1 to a session 𝑆2 indicates that an endpoint of 𝑆2 is stored in one of the buffers of 𝑆1. The figure provides a
local viewpoint, only depicting the notions directly involved in an interaction and omitting other threads and
sessions that are connected to the depicted ones as well. While the communication topology is cyclic within
a multiparty session (where the global types rule out deadlock), it is acyclic between multiparty sessions, an
invariant preserved by multiparty interactions. Acyclicity is crucial for deadlock and memory leak freedom.

7.4 Initialization and Preservation of the Invariant
The invariant holds for initial configurations and is preserved by the operational semantics:

Lemma 7.4. If ∅ ⊢ 𝑒 :1, then wf ([𝑒], ∅).
Lemma 7.5. If (®𝑒, ℎ) {cfg (®𝑒′, ℎ′), then wf (®𝑒, ℎ) implies wf (®𝑒′, ℎ′).
The proof of the last lemma involves three aspects. First, because the configuration changes,

we need to produce a connectivity graph for the new configuration as the connectivity graph is
existentially quantified in the configuration invariant wf (®𝑒, ℎ). Second, we need to show that the
new connectivity graph is acyclic in the appropriate sense. Third, we need to show that all the local
invariant predicates wflocal(®𝑒,ℎ) (𝑣,Δ) still hold. The interesting cases of this proof are the steps that
involve the channel operations, for which the graph transformations are depicted in Figure 10.

Proving these graph transformations by picking a new graph by hand is cumbersome (especially
in a mechanized proof). The connectivity graph framework therefore provides abstract separation
logic lemmas to prove the transformations without having to mention the graph or having to deal

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 107. Publication date: August 2022.

Multiparty GV: Functional Multiparty Session Types with Certified Deadlock Freedom 107:23

with its acyclicity explicitly. We can re-use some of these abstract transformation rules, but for the
𝑛-ary fork we need a new rule (which we state abstractly for arbitrary vertices V and edge labels E).

Lemma 7.6. Let 𝑣1, 𝑣2 ∈ V and𝑤1, . . . ,𝑤𝑛 ∈ V. To prove wf (𝑃) implies wf (𝑃 ′), it suffices to prove,
for all Δ ∈ Multiset E:

(1) 𝑃 (𝑣,Δ) −∗ 𝑃 ′ (𝑣,Δ) for all 𝑣 ∈ V \ {𝑣1, 𝑣2,𝑤1, . . . ,𝑤𝑛}
(2) 𝑃 (𝑣,Δ) −∗ ⌜Δ = ∅⌝ for all 𝑣 ∈ {𝑣2,𝑤1, . . . ,𝑤𝑛}
(3) 𝑃 (𝑣1,Δ) −∗ ∃ 𝑙0, . . . , 𝑙𝑛 . (own(𝑣2 ↦→ 𝑙0) −∗ 𝑃 ′ (𝑣1,Δ)) ∗

𝑃 ′ (𝑣2, {𝑙0, . . . , 𝑙𝑛}) ∗
([∗]𝑖 ∈ {1..𝑛}. own(𝑣2 ↦→ 𝑙𝑖) −∗ 𝑃 ′ (𝑣𝑖 , ∅))

7.5 Proof of the Reachability Theorem
We give an intuitive description of the proof of our main reachability theorem (Theorem 5.7).

Waiting induction. At the top level of the proof, we apply the waiting induction principle
of the connectivity graph library. Waiting induction relies on acyclicity of the graph and allows
one to prove a predicate 𝑃 (𝑣) for all vertices 𝑣 ∈ V of a graph 𝐺 : Cgraph(V, E), while assuming
the “induction hypothesis” that 𝑃 (𝑣 ′) already holds for all vertices 𝑣 ′ such that 𝑣 is waiting for 𝑣 ′,
where “waiting for” is a binary relation chosen by us. The predicate 𝑃 (𝑣) that we aim to prove for
all vertices (i.e., threads and sessions) is that 𝑣 is reachable (see Theorem 5.7). The waiting relation
we use is based on the blocked(®𝑒,ℎ) (𝑣, 𝑣 ′) relation, defined in §5. Waiting induction gives us the
following induction hypotheses when proving that 𝑣 is reachable:

For threads: If the thread is blocked on a session, we may assume that the session is reachable.
For sessions: The owners of the session that are not blocked on this session are reachable.

Reachability of threads. To show that a thread is reachable, we must show that it can take
a step, or that it is blocked on an endpoint of a session that is reachable. By typing, either the
thread can take a pure step, or is a session operation where all subexpressions are values. A
session operation can proceed if the structure of the heap is valid, which we can conclude from
the configuration invariant. The only possibility for a blocked operation is if we are trying to
receive and the buffer we are trying to receive from is currently empty. Here, the waiting induction
hypothesis applies (because blocked(®𝑒,ℎ) holds), using which we can show that the session that we
are blocked on is reachable. Then, by the definition of reachability, the thread is also reachable.

Reachability of sessions. To show that a session 𝑠 is reachable we must show that there exists
a thread or session 𝑣 that is (1) reachable, (2) holds an endpoint of 𝑠 , and (3) is not blocked on
𝑠 . We use the consistency of the buffers and local types of the session to show that there is an
endpoint of 𝑠 whose owner 𝑣 is not blocked on this session (though 𝑣 may be blocked on another
session). This allows us to use the induction hypothesis to conclude that 𝑣 is reachable (because
blocked(®𝑒,ℎ) (Session(𝑠), 𝑣) does not hold). Then, using the definition of reachability for sessions,
we conclude that 𝑠 is reachable.

Main results. Theorem 5.7 is obtained by combining the reasoning above with Lemma 7.4 and
Lemma 7.5. Global progress (Theorem 5.1) follows as an easy corollary. For two directions of the
equivalence of partial deadlock/leak freedom with full reachability (Theorem 5.6), we show that
none of the objects in a deadlock/leak are reachable, and vice versa that the set of non-reachable
threads and channels forms a deadlock/leak if this set is nonempty.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 107. Publication date: August 2022.

107:24 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers

8 MECHANIZATION
All our results have been mechanized in Coq using Iris Proof Mode [Krebbers et al. 2017, 2018] for
the separation-logic part. The final results of our mechanization are Theorem 5.1, Theorem 5.6, and
Theorem 5.7. We have also mechanized the translation from binary to multiparty in Figure 5 and
have proved that it is type preserving. The mechanization is 10.4k lines of Coq code, consisting of
217 definitions, and 638 proved lemmas and theorems. Approximately half of the mechanization
consists of results specific to our multiparty calculus, and the other half consists of the framework
of Jacobs et al. [2022a], extended with support for n-ary graph transformations (§7.4).

Archive of the mechanization. The Coq mechanization can be found at Jacobs et al. [2022b].

Partial deadlock freedom and the empty type. A surprising technical result of the mecha-
nization is that while global progress remains true in the presence of 𝑛-ary sum types, we discovered
that partial deadlock freedom is by default false for languages that allow 𝑛 = 0. The reason is that
a thread can throw away endpoints by pattern matching on the empty sum type. While this pattern
match will never execute because the empty type can only be produced by a looping expression
(thus guaranteeing global progress), the thread can still lose an endpoint during a substitution step
before the empty pattern match happens. This can create a partial deadlock for the threads holding
the other endpoints of the session. To fix this, we amend the typing judgment Γ ⊢ 𝑒 :𝜏 to require
the variable context Γ to be empty when pattern matching on an empty sum type. This formally
ensures that the thread’s expression keeps track of all endpoints and does not lose any. This does
not limit the expressivity of empty types because one can obtain a value of any type from an empty
pattern match, including a function that can eat the remaining variables in the context.

9 RELATEDWORK
To relate MPGV to the existing body of work it is helpful to consider two axes of categorization:
mechanization and session type philosophy. The use of a proof assistant to mechanize correctness
results has only been taken up recently by the session type community. Typeset pen-and-paper
proofs and appeals to results in logic (e.g., cut elimination) still constitute the status quo. We summa-
rize mechanizations of session types below, but remark that only two works target mechanization
of deadlock freedom up to date: Castro-Perez et al. [2021] for a single multiparty session and Jacobs
et al. [2022a] for GV-style binary session types.
At first blush, session types can be distinguished into binary and multiparty. Whereas binary

session types restrict the concurrent interaction to two participants, multiparty session types allow
an arbitrary but statically determined number of participants (“roles”), by complementing the local
perspective of a participant with a global type. A more foundational distinction, especially given the
unifying nature of MPGV, is underlying philosophy. Session types [Honda 1993; Honda et al. 1998]
have been conceived as a typing discipline for process calculi and as such preserve the fundamental
characteristics of concurrent computation. Concurrent computation is inherently non-deterministic
and may also give raise to deadlocks. For example, the below session-typed program from [Gay and
Vasconcelos 2010] (page 38) is well-typed but deadlocks:
⟨let 𝑐1 = request𝑎1 in let 𝑐2 = request𝑎2 in let (𝑐1, 𝑥) = receive 𝑐1 in send 𝑣 𝑐2⟩ | |
⟨let𝑑1 = accept𝑎1 in let𝑑2 = accept𝑎2 in let (𝑑1, 𝑦) = receive𝑑2 in send𝑤 𝑑1⟩
The program composes two threads (processes) in parallel, amounting to two binary interleaved

sessions 𝑎1 and 𝑎2. Sessions are initiated by matching a request for a session (request𝑎1) with
an accept for that session (accept𝑎1) creating two new endpoints per session (𝑐1 and 𝑐2). The
interleaving of the two sessions causes a deadlock: the receive on 𝑐1 blocks the send on 𝑐2, which is
necessary for the former. The pairing of session requests with matching accepts is non-deterministic.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 107. Publication date: August 2022.

Multiparty GV: Functional Multiparty Session Types with Certified Deadlock Freedom 107:25

For example, if we compose the two threads with a third thread that is also accepting a session 𝑎1,
then only one of the two accepting threads will be chosen.
This initialization pattern carries over to multiparty sessions [Honda et al. 2008, 2016]. In the

multiparty case a request is parameterized with the number of participants 𝑛 and accepts with
the role names ranging from 1 to 𝑛 − 1. Like binary session types, multiparty session types that
assume this initialization pattern can deadlock. In particular, deadlocks can arise if a participant
simultaneously engages in several sessions. A strategy adopted by some multiparty session type
work (e.g., Castro-Perez et al. [2021]) is to restrict a program to a single global multiparty session,
precluding dynamic session spawning and first-class sessions. Alternatively, advanced multiparty
session-type systems [Coppo et al. 2013; Bettini et al. 2008; Coppo et al. 2016] employ extrinsic
orders/priorities to rule out deadlocks among interleaved multiparty sessions, requiring order
annotations in addition to global type declarations.
We refer to the line of session type work that adopts the initialization pattern shown above,

which separates session creation from thread spawning, as traditional session types. We like to
contrast this line of work with the one that adopts an initialization pattern based on cut, inspired by
the Curry-Howard correspondence between linear logic and the session-typed 𝜋-calculus [Caires
and Pfenning 2010; Wadler 2012; Lindley and Morris 2015; Kokke et al. 2019], which we refer to as
logic-based session types. Logic-based session types come with strong guarantees out of the box.
These include, besides session fidelity, deadlock freedom. Given our focus on deadlock freedom,
MPGV adopts the initialization pattern of logic-based session types and generalizes GV’s fork
construct [Wadler 2012; Lindley and Morris 2015, 2016b, 2017; Fowler et al. 2019, 2021] for binary
session types to the 𝑛-ary setting. The above program would thus not type check in MPGV.

A recent extension of GV by Fowler et al. [2021], Hypersequent GV (HGV), adopts hypersequents
[Montesi and Peressotti 2018; Kokke et al. 2019], inspired by Avron [1991], to facilitate a tighter
correspondence to the session-typed 𝜋-calculus and simplify GV’s meta theory by accounting
for the forest topology of runtime structures. While this account is reminiscent of our notion of
logical topology, the specifics of HGV and our MPGV system are quite different. Most notably,
HGV employs structural congruences for runtime typing, whereas our dynamics operates on a flat
thread pool and heap (allowing an arbitrary thread to step without prior application of structural
congruences) and our runtime typing relies on separation logic and connectivity graphs.
We next review the individual related work in more detail, referring to our categorization of

traditional and logic-based session types as convenient. Given our focus on mechanization, we
start with mechanized related work and then conclude with non-mechanized related work.

Mechanized. The only existing work on mechanizing deadlock freedom for multiparty session
types is Zooid, a DSL by Castro-Perez et al. [2021] embedded in Coq. Although a traditional session
type language in spirit, Zooid does neither support session spawning nor delegation, but restricts a
program to a single global multiparty session. Zooid programs thus rule out deadlocks caused by
multiparty session interleavings by construction. Thanks to a shallow embedding in Coq, Zooid
programs can be extracted from Coq to OCaml via Coq’s extraction mechanism. Send and receive
operations are handled as monadic operations in which the endpoint is implicit (because there
is a unique global session). A shallow embedding of binders works in this context because Zooid
variables can only contain purely functional data, which can be represented as Coq data. Our
definition of (runtime) global types and projections is inspired by Zooid.
MPGV not only differs from Zooid in its support for multiple interacting sessions, first-class

endpoints, dynamic spawning, and delegation, but also in statement and precision of the deadlock
freedom property. Our mechanization guarantees global progress—including the stronger notions
of partial deadlock/leak freedom. Zooid’s main result, on the other hand, is phrased in terms of

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 107. Publication date: August 2022.

107:26 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers

traces, asserting that for all traces produced by a well-typed process there exists a matching trace
in the larger system. This result relies on properties of global types from the literature and also
assumes the ability to choose a favorable schedule. Our mechanization in contrast states deadlock
freedom for all executions/schedules and gives a closed end-to-end proof in Coq.
Jacobs et al. [2022a] contribute a mechanization of deadlock freedom for a variant of GV, and

thus target binary session types. Like our mechanization, theirs accommodates dynamic session
spawning and delegation, but restricted to the binary setting. Jacobs et al. [2022a] moreover
contribute the notion of a connectivity graph, a parametric proof method for deadlock freedom,
relying on acyclicity of the communication topology. We extend this proof method with 𝑛-ary
operations and support of cyclic connectivity within a session governed by consistency. Our
generalization to 𝑛-ary operations also enables our encoding of binary session types in MPGV (§4).
Unlike Jacobs et al.’s variant of GV, our MPGV system moreover supports choice, and thus provides
the first mechanization of deadlock and leak freedom for binary session types with choice.

Moreover, there exists work on mechanizing the metatheory of binary session types. Thiemann
[2019] proves type safety of a linear _-calculus with session types inspired by GV. The result does
not include deadlock nor memory leak freedom. Hinrichsen et al. [2021] prove type safety for a
comprehensive session-typed language with locks, subtyping and polymorphism using Iris in Coq.
Their type system is affine, which means that deadlocks are considered safe. Tassarotti et al. [2017]
prove termination preservation of a compiler for an affine session-typed language using Iris in Coq.

More distantly, there exist various mechanized results involving the 𝜋-calculus. Goto et al. [2016]
prove type safety for a 𝜋-calculus with a polymorphic session type system in Coq. Their type
system allows dropping channels, and hence does not enjoy deadlock nor memory leak freedom.
Ciccone and Padovani [2020] mechanize dependent binary session types by embedding them into a
𝜋-calculus in Agda. They prove subject reduction (i.e., preservation) and that typing is preserved by
structural congruence, but not deadlock or memory leak freedom. Similarly, Zalakain and Dardha
[2021] mechanize subject reduction of a resource-aware 𝜋-calculus, focusing on the handling of
linear resources through leftover typing. Gay et al. [2020] study various notions of duality in Agda,
and show that distribution laws for duality over the recursion operator are unsound. We adopted
their approach of using coinductive types for mechanizing general recursive session types. Lastly,
mechanizations of choreographic languages [Montesi 2020; Cruz-Filipe et al. 2021a,b] focus on
determinism, confluence, and Turing completeness, with deadlock freedom holding by design.

Non-mechanized. The work that is most closely related to ours in terms of underlying philoso-
phy but non-mechanized is the work by Carbone et al. [2015, 2016, 2017] on coherence proofs. The
authors introduce a proof theory grounded in classical linear logic via a Curry-Howard correspon-
dence, illuminating the connection between binary and multiparty session types, in a 𝜋-calculus
setting. The correspondence is due the novel notion of coherence, which generalizes duality known
from binary session types to compatibility of local types with a global type of a multiparty session.
Given a coherence derivation, an𝑛-ary cut permits composing𝑛 participants concurrently, similar to
our 𝑛-ary fork. Coherence also enables a semantic-preserving translation from multiparty sessions
to corresponding binary sessions via an arbiter process [Carbone et al. 2016]. Deadlock freedom
follows from cut admissibility and cut elimination, giving a normalization argument. Such an
argument is made possible by using cut reductions for the semantics and restricting to a non-Turing
complete calculus without loops or recursion. In contrast, we provide a complete mechanization of
deadlock freedom of an 𝑛-ary session-typed functional language, with recursive types, first-class
endpoints, and a realistic asynchronous operational semantics based on an unstructured thread
pool. Our encoding of binary sessions in MPGV moreover does not require an arbiter process.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 107. Publication date: August 2022.

Multiparty GV: Functional Multiparty Session Types with Certified Deadlock Freedom 107:27

Similarly, Caires and Pérez [2016] embed multiparty session types in a binary calculus by a
translation from a global type to a medium process. Instead of communicating with each other,
the participants communicate with the central medium process. This approach inherits deadlock
freedom from the surrounding binary calculus, but requires central coordination and sequentializes
the communication. Toninho and Yoshida [2018] show that the interconnection networks of
classical linear logic (CLL) are strictly less expressive than those of a multiparty session calculus.
Partial multiparty compatibility is used to define a new binary cut rule that can form circular
interconnections but preserves the deadlock-freedom of CLL, albeit for a single multiparty session.
More distantly related are works that use Kobayashi-style type systems [Kobayashi 1997, 2002,

2006; Giachino et al. 2014; Kobayashi and Laneve 2017] that enrich channel typing with usage
information and partial orders to rule out cyclic dependencies among channel actions. In the
traditional multiparty setting this is most notably the work by Coppo et al. [2013]; Bettini et al.
[2008]; Coppo et al. [2016], which contributes an interaction type system that ensures deadlock
freedom not only within but also between several multiparty sessions. This work not only differs
from MPGV in that it requires ordering annotations in addition to global type declarations, but also
in the statement of the global progress property. To account for processes that lack a communication
partner, a possibility in the traditional setting, progress is stated relative to a catalyzing process
that, if present, would allow the closed program to step. MPGV sets itself additionally apart in its
tight integration with a functional language.
Kobayashi-style systems have also been adopted for logic-based binary session types [Dardha

and Gay 2018; Kokke and Dardha 2021b,a]. The authors introduce a multicut, which allows for
circular topologies within a session. To rule out deadlocks by type checking, session types must
be annotated with priorities. Priority polymorphism has been used by Padovani [2014] to support
cyclic interleavings of recursive processes. Partial order annotations, called worlds, are also used by
Balzer et al. [2019], in a logic-based binary session type calculus that combines linear and shared
[Balzer and Pfenning 2017; Balzer et al. 2018] sessions. Shared session types introduce a controlled
form of aliasing, an extension we would like to consider in future work.
A somewhat orthogonal approach to ensuring progress in the presence of dynamic thread

allocation is to make global types more powerful. While traditional multiparty session types involve
a fixed number of participants per session, Deniélou and Yoshida [2011]; Demangeon and Honda
[2012]; Hu and Yoshida [2017] proposed extensions of single-session systems to make that number
dynamic. This line of work does not support sessions as first-class data, and the expressivity is
orthogonal to GV and MPGV. Hence, extending MPGV with a dynamic number of participants is
an interesting extension for future work.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful feedback and especially for their encour-
agement to explore a more permissive consistency condition than compliance with a global type,
resulting in §6. We are grateful to Jorge Pérez, Bas van den Heuvel, Dan Frumin, and Bernardo
Toninho for discussions on this paper and related work. Robbert Krebbers was supported by the
Dutch Research Council (NWO), project 016.Veni.192.259. Stephanie Balzer was supported in part
by AFOSR under grant FA9550-21-1-0385 (Tristan Nguyen, program manager) and by the National
Science Foundation under award number CCF-2211996. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect
the views of the AFOSR or NSF.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 107. Publication date: August 2022.

107:28 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers

REFERENCES
Arnon Avron. 1991. Hypersequents, Logical Consequence and Intermediate Logics for Concurrency. Annals of Mathematics

and Artificial Intelligence 4 (1991), 225–248. https://doi.org/10.1007/BF01531058
Stephanie Balzer and Frank Pfenning. 2017. Manifest Sharing with Session Types. PACMPL 1, ICFP (2017), 37:1–37:29.

https://doi.org/10.1145/3110281
Stephanie Balzer, Frank Pfenning, and Bernardo Toninho. 2018. A Universal Session Type for Untyped Asynchronous

Communication. In CONCUR (LIPIcs, Vol. 118). 30:1–30:18. https://doi.org/10.4230/LIPIcs.CONCUR.2018.30
Stephanie Balzer, Bernardo Toninho, and Frank Pfenning. 2019. Manifest Deadlock-Freedom for Shared Session Types. In

ESOP (LNCS, Vol. 11423). 611–639. https://doi.org/10.1007/978-3-030-17184-1_22
Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida.

2008. Global Progress in Dynamically Interleaved Multiparty Sessions. In CONCUR (LNCS, Vol. 5201). 418–433. https:
//doi.org/10.1007/978-3-540-85361-9_33

Luís Caires and Jorge A. Pérez. 2016. Multiparty Session Types Within a Canonical Binary Theory, and Beyond. In FORTE
(LNCS, Vol. 9688). 74–95. https://doi.org/10.1007/978-3-319-39570-8_6

Luís Caires and Frank Pfenning. 2010. Session Types as Intuitionistic Linear Propositions. In CONCUR (LNCS, Vol. 6269).
222–236. https://doi.org/10.1007/978-3-642-15375-4_16

Marco Carbone, Sam Lindley, Fabrizio Montesi, Carsten Schürmann, and Philip Wadler. 2016. Coherence Generalises
Duality: A Logical Explanation of Multiparty Session Types. In CONCUR (LIPIcs, Vol. 59). 33:1–33:15. https://doi.org/10.
4230/LIPIcs.CONCUR.2016.33

Marco Carbone, Fabrizio Montesi, Carsten Schürmann, and Nobuko Yoshida. 2015. Multiparty Session Types as Coherence
Proofs. In CONCUR (LIPIcs, Vol. 42). 412–426. https://doi.org/10.4230/LIPIcs.CONCUR.2015.412

Marco Carbone, Fabrizio Montesi, Carsten Schürmann, and Nobuko Yoshida. 2017. Multiparty session types as coherence
proofs. Acta Informatica 54, 3 (2017), 243–269. https://doi.org/10.1007/s00236-016-0285-y

David Castro-Perez, Francisco Ferreira, Lorenzo Gheri, and Nobuko Yoshida. 2021. Zooid: A DSL for Certified Multiparty
Computation: From Mechanised Metatheory to Certified Multiparty Processes. In PLDI. 237–251. https://doi.org/10.
1145/3453483.3454041

David Castro-Perez, Francisco Ferreira, and Nobuko Yoshida. 2020. EMTST: Engineering the Meta-theory of Session Types.
In TACAS (2) (LNCS, Vol. 12079). 278–285. https://doi.org/10.1007/978-3-030-45237-7_17

Ruofei Chen, Stephanie Balzer, and Bernardo Toninho. 2022. Ferrite: A Judgmental Embedding of Session Types in Rust. In
ECOOP (LIPIcs, Vol. 222). 22:1–22:28. https://doi.org/10.4230/LIPIcs.ECOOP.2022.22

Luca Ciccone and Luca Padovani. 2020. A Dependently Typed Linear 𝜋-Calculus in Agda. In PPDP. 8:1–8:14. https:
//doi.org/10.1145/3414080.3414109

Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko Yoshida. 2013. Inference of Global Progress
Properties for Dynamically Interleaved Multiparty Sessions. In COORDINATION. https://doi.org/10.1007/978-3-642-
38493-6_4

Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca Padovani. 2016. Global Progress for Dynamically
Interleaved Multiparty Sessions. MSCS 26, 2 (2016), 238–302. https://doi.org/10.1017/S0960129514000188

Karl Crary, Robert Harper, and Sidd Puri. 1999. What is a Recursive Module?. In PLDI. 50–63. https://doi.org/10.1145/
301618.301641

Luís Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti. 2021a. Certifying Choreography Compilation. In ICTAC (LNCS,
Vol. 12819). 115–133. https://doi.org/10.1007/978-3-030-85315-0_8

Luís Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti. 2021b. Formalising a Turing-Complete Choreographic Language
in Coq. In ITP (LIPIcs, Vol. 193). 15:1–15:18. https://doi.org/10.4230/LIPIcs.ITP.2021.15

Ornela Dardha and Simon J. Gay. 2018. A New Linear Logic for Deadlock-Free Session-Typed Processes. In FOSSACS (LNCS,
Vol. 10803). 91–109. https://doi.org/10.1007/978-3-319-89366-2_5

Romain Demangeon and Kohei Honda. 2012. Nested Protocols in Session Types. In CONCUR (LNCS, Vol. 7454). 272–286.
https://doi.org/10.1007/978-3-642-32940-1_20

Pierre-Malo Deniélou and Nobuko Yoshida. 2011. Dynamic multirole session types. In POPL. 435–446. https://doi.org/10.
1145/1926385.1926435

Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida, and Sophia Drossopoulou. 2006. Session Types for
Object-Oriented Languages. In ESOP (LNCS, Vol. 4067). 328–352. https://doi.org/10.1007/11785477_20

Simon Fowler, Wen Kokke, Ornela Dardha, Sam Lindley, and J. Garrett Morris. 2021. Separating Sessions Smoothly. In
CONCUR (LIPIcs, Vol. 203). 36:1–36:18. https://doi.org/10.4230/LIPIcs.CONCUR.2021.36

Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. 2019. Exceptional Asynchronous Session Types: Session
Types Without Tiers. PACMPL 3, POPL (2019), 28:1–28:29. https://doi.org/10.1145/3290341

Simon J. Gay, Peter Thiemann, and Vasco T. Vasconcelos. 2020. Duality of Session Types: The Final Cut. In PLACES (EPTCS,
Vol. 314). 23–33. https://doi.org/10.4204/EPTCS.314.3

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 107. Publication date: August 2022.

https://doi.org/10.1007/BF01531058
https://doi.org/10.1145/3110281
https://doi.org/10.4230/LIPIcs.CONCUR.2018.30
https://doi.org/10.1007/978-3-030-17184-1_22
https://doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.1007/978-3-319-39570-8_6
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.4230/LIPIcs.CONCUR.2016.33
https://doi.org/10.4230/LIPIcs.CONCUR.2016.33
https://doi.org/10.4230/LIPIcs.CONCUR.2015.412
https://doi.org/10.1007/s00236-016-0285-y
https://doi.org/10.1145/3453483.3454041
https://doi.org/10.1145/3453483.3454041
https://doi.org/10.1007/978-3-030-45237-7_17
https://doi.org/10.4230/LIPIcs.ECOOP.2022.22
https://doi.org/10.1145/3414080.3414109
https://doi.org/10.1145/3414080.3414109
https://doi.org/10.1007/978-3-642-38493-6_4
https://doi.org/10.1007/978-3-642-38493-6_4
https://doi.org/10.1017/S0960129514000188
https://doi.org/10.1145/301618.301641
https://doi.org/10.1145/301618.301641
https://doi.org/10.1007/978-3-030-85315-0_8
https://doi.org/10.4230/LIPIcs.ITP.2021.15
https://doi.org/10.1007/978-3-319-89366-2_5
https://doi.org/10.1007/978-3-642-32940-1_20
https://doi.org/10.1145/1926385.1926435
https://doi.org/10.1145/1926385.1926435
https://doi.org/10.1007/11785477_20
https://doi.org/10.4230/LIPIcs.CONCUR.2021.36
https://doi.org/10.1145/3290341
https://doi.org/10.4204/EPTCS.314.3

Multiparty GV: Functional Multiparty Session Types with Certified Deadlock Freedom 107:29

Simon J. Gay and Vasco Thudichum Vasconcelos. 2010. Linear Type Theory for Asynchronous Session Types. JFP 20, 1
(2010), 19–50. https://doi.org/10.1017/S0956796809990268

Silvia Ghilezan, Jovanka Pantovic, Ivan Prokic, Alceste Scalas, and Nobuko Yoshida. 2021. Precise subtyping for asynchronous
multiparty sessions. PACMPL 5, POPL (2021), 1–28. https://doi.org/10.1145/3434297

Elena Giachino, Naoki Kobayashi, and Cosimo Laneve. 2014. Deadlock Analysis of Unbounded Process Networks. In
CONCUR (LNCS, Vol. 8704). 63–77. https://doi.org/10.1007/978-3-662-44584-6_6

Matthew A. Goto, Radha Jagadeesan, Alan Jeffrey, Corin Pitcher, and James Riely. 2016. An Extensible Approach to Session
Polymorphism. MSCS 26, 3 (2016), 465–509. https://doi.org/10.1017/S0960129514000231

Jonas Kastberg Hinrichsen, Daniël Louwrink, Robbert Krebbers, and Jesper Bengtson. 2021. Machine-checked semantic
session typing. In CPP. 178–198. https://doi.org/10.1145/3437992.3439914

Kohei Honda. 1993. Types for Dyadic Interaction. In CONCUR (LNCS, Vol. 715). 509–523. https://doi.org/10.1007/3-540-
57208-2_35

Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. 1998. Language Primitives and Type Discipline for
Structured Communication-Based Programming. In ESOP (LNCS, Vol. 1381). 122–138. https://doi.org/10.1007/BFb0053567

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty Asynchronous Session Types. In POPL. 273–284.
https://doi.org/10.1145/1328438.1328472

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2016. Multiparty Asynchronous Session Types. J. ACM 63, 1 (2016),
9:1–9:67. https://doi.org/10.1145/2827695

Raymond Hu and Nobuko Yoshida. 2017. Explicit Connection Actions in Multiparty Session Types. In FASE (LNCS, Vol. 10202).
116–133. https://doi.org/10.1007/978-3-662-54494-5_7

Keigo Imai, Nobuko Yoshida, and Shoji Yuen. 2019. Session-Ocaml: A Session-Based Library with Polarities and Lenses.
Science of Computer Programming 172 (2019), 135–159. https://doi.org/10.1016/j.scico.2018.08.005

Keigo Imai, Shoji Yuen, and Kiyoshi Agusa. 2010. Session Type Inference in Haskell. In PLACES (EPTCS, Vol. 69). 74–91.
https://doi.org/10.4204/EPTCS.69.6

Jules Jacobs, Stephanie Balzer, and Robbert Krebbers. 2022a. Connectivity graphs: a method for proving deadlock freedom
based on separation logic. PACMPL 6, POPL, 1–33. https://doi.org/10.1145/3498662

Jules Jacobs, Stephanie Balzer, and Robbert Krebbers. 2022b. MPGV Coq development. https://doi.org/10.5281/zenodo.
6883734

Thomas Bracht Laumann Jespersen, Philip Munksgaard, and Ken Friis Larsen. 2015. Session Types for Rust. In WGP. 13–22.
https://doi.org/10.1145/2808098.2808100

Alex C. Keizer, Henning Basold, and Jorge A. Pérez. 2021. Session Coalgebras: A Coalgebraic View on Session Types and
Communication Protocols. In ESOP (LNCS, Vol. 12648). 375–403. https://doi.org/10.1007/978-3-030-72019-3_14

Naoki Kobayashi. 1997. A Partially Deadlock-Free Typed Process Calculus. In LICS. 128–139. https://doi.org/10.1109/LICS.
1997.614941

Naoki Kobayashi. 2002. A Type System for Lock-Free Processes. I&C 177, 2 (2002), 122–159. https://doi.org/10.1006/inco.
2002.3171

Naoki Kobayashi. 2006. A New Type System for Deadlock-Free Processes. In CONCUR (LNCS, Vol. 4137). 233–247. https:
//doi.org/10.1007/11817949_16

Naoki Kobayashi and Cosimo Laneve. 2017. Deadlock Analysis of Unbounded Process Networks. Inf. Comput. 252 (2017),
48–70. https://doi.org/10.1016/j.ic.2016.03.004

Wen Kokke. 2019. Rusty Variation: Deadlock-free Sessions with Failure in Rust. In ICE (EPTCS, Vol. 304). 48–60. https:
//doi.org/10.4204/EPTCS.304.4

Wen Kokke and Ornela Dardha. 2021a. Deadlock-Free Session Types in Linear Haskell. In Haskell Symposium. 1–13.
https://doi.org/10.1145/3471874.3472979

Wen Kokke and Ornela Dardha. 2021b. Prioritise the Best Variation. In FORTE (LNCS, Vol. 12719). 100–119. https:
//doi.org/10.1007/978-3-030-78089-0_6

Wen Kokke, Fabrizio Montesi, and Marco Peressotti. 2019. Better Late Than Never: a Fully-Abstract Semantics for Classical
Processes. PACMPL 3, POPL (2019), 24:1–24:29. https://doi.org/10.1145/3290337

Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver Kaiser, Amin Timany, Arthur Charguéraud,
and Derek Dreyer. 2018. MoSeL: A General, Extensible Modal Framework for Interactive Proofs in Separation Logic.
PACMPL 2, ICFP (2018), 77:1–77:30. https://doi.org/10.1145/3236772

Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive Proofs in Higher-Order Concurrent Separation Logic.
In POPL. 205–217. https://doi.org/10.1145/3009837.3009855

Sam Lindley and J. Garrett Morris. 2015. A Semantics for Propositions as Sessions. In ESOP (LNCS, Vol. 9032). 560–584.
https://doi.org/10.1007/978-3-662-46669-8_23

Sam Lindley and J. Garrett Morris. 2016a. Embedding Session Types in Haskell. In Haskell Symposium. 133–145. https:
//doi.org/10.1145/2976002.2976018

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 107. Publication date: August 2022.

https://doi.org/10.1017/S0956796809990268
https://doi.org/10.1145/3434297
https://doi.org/10.1007/978-3-662-44584-6_6
https://doi.org/10.1017/S0960129514000231
https://doi.org/10.1145/3437992.3439914
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.1007/978-3-662-54494-5_7
https://doi.org/10.1016/j.scico.2018.08.005
https://doi.org/10.4204/EPTCS.69.6
https://doi.org/10.1145/3498662
https://doi.org/10.5281/zenodo.6883734
https://doi.org/10.5281/zenodo.6883734
https://doi.org/10.1145/2808098.2808100
https://doi.org/10.1007/978-3-030-72019-3_14
https://doi.org/10.1109/LICS.1997.614941
https://doi.org/10.1109/LICS.1997.614941
https://doi.org/10.1006/inco.2002.3171
https://doi.org/10.1006/inco.2002.3171
https://doi.org/10.1007/11817949_16
https://doi.org/10.1007/11817949_16
https://doi.org/10.1016/j.ic.2016.03.004
https://doi.org/10.4204/EPTCS.304.4
https://doi.org/10.4204/EPTCS.304.4
https://doi.org/10.1145/3471874.3472979
https://doi.org/10.1007/978-3-030-78089-0_6
https://doi.org/10.1007/978-3-030-78089-0_6
https://doi.org/10.1145/3290337
https://doi.org/10.1145/3236772
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1007/978-3-662-46669-8_23
https://doi.org/10.1145/2976002.2976018
https://doi.org/10.1145/2976002.2976018

107:30 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers

Sam Lindley and J. Garrett Morris. 2016b. Talking Bananas: Structural Recursion For Session Types. In ICFP. 434–447.
https://doi.org/10.1145/2951913.2951921

Sam Lindley and J. Garrett Morris. 2017. Lightweight Functional Session Types. In Behavioural Types: from Theory to Tools.
https://homepages.inf.ed.ac.uk/slindley/papers/fst.pdf

Fabrizio Montesi. 2020. Introduction to Choreographies. (2020). https://www.fabriziomontesi.com/teaching/ct-2020/files/
chor-notes.pdf Draft.

Fabrizio Montesi and Marco Peressotti. 2018. Classical Transitions. CoRR abs/1803.01049 (2018). arXiv:1803.01049
http://arxiv.org/abs/1803.01049

DimitrisMostrous, Nobuko Yoshida, and Kohei Honda. 2009. Global Principal Typing in Partially Commutative Asynchronous
Sessions. In ESOP (LNCS, Vol. 5502). 316–332. https://doi.org/10.1007/978-3-642-00590-9_23

Peter W. O’Hearn and David J. Pym. 1999. The Logic Of Bunched Implications. Bulletin of Symbolic Logic 5, 2 (1999), 215–244.
https://doi.org/10.2307/421090

Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local Reasoning about Programs that Alter Data Structures.
In CSL (LNCS, Vol. 2142). 1–19. https://doi.org/10.1007/3-540-44802-0_1

Luca Padovani. 2014. Deadlock and lock freedom in the linear 𝜋-calculus. In LICS. 72:1–72:10. https://doi.org/10.1145/
2603088.2603116

Luca Padovani. 2017. A Simple Library Implementation of Binary Sessions. JFP 27 (2017), e4. https://doi.org/10.1017/
S0956796816000289

Frank Pfenning and Dennis Griffith. 2015. Polarized Substructural Session Types. In FoSSaCS (LNCS, Vol. 9034). 3–22.
https://doi.org/10.1007/978-3-662-46678-0_1

Riccardo Pucella and Jesse A. Tov. 2008. Haskell Session Types with (Almost) No Class. In Haskell Symposium. 25–36.
https://doi.org/10.1145/1411286.1411290

Arjen Rouvoet, Casper Bach Poulsen, Robbert Krebbers, and Eelco Visser. 2020. Intrinsically-Typed Definitional Interpreters
for Linear, Session-Typed Languages. In CPP. 284–298. https://doi.org/10.1145/3372885.3373818

Alceste Scalas and Nobuko Yoshida. 2016. Lightweight Session Programming in Scala. In ECOOP (LIPIcs, 56). 21:1–21:28.
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21

Alceste Scalas and Nobuko Yoshida. 2019a. Less is more: multiparty session types revisited. PACMPL 3, POPL (2019),
30:1–30:29. https://doi.org/10.1145/3290343

Alceste Scalas and Nobuko Yoshida. 2019b. Less is more: multiparty session types revisited (technical report). https:
//www.doc.ic.ac.uk/research/technicalreports/2018/DTRS18-6.pdf

Joseph Tassarotti, Ralf Jung, and Robert Harper. 2017. A Higher-Order Logic for Concurrent Termination-Preserving
Refinement. In ESOP (LNCS, Vol. 10201). 909–936. https://doi.org/10.1007/978-3-662-54434-1_34

Peter Thiemann. 2019. Intrinsically-Typed Mechanized Semantics for Session Types. In PPDP. 19:1–19:15. https://doi.org/10.
1145/3354166.3354184

Bernardo Toninho. 2015. A Logical Foundation for Session-Based Concurrent Computation. Ph. D. Dissertation. Carnegie
Mellon University and New University of Lisbon.

Bernardo Toninho, Luís Caires, and Frank Pfenning. 2013. Higher-Order Processes, Functions, and Sessions: A Monadic
Integration. In ESOP (LNCS, Vol. 7792). 350–369. https://doi.org/10.1007/978-3-642-37036-6_20

Bernardo Toninho and Nobuko Yoshida. 2018. Interconnectability of Session-Based Logical Processes. TOPLAS 40, 4 (2018),
17:1–17:42. https://doi.org/10.1145/3242173

Philip Wadler. 2012. Propositions as Sessions. In ICFP. 273–286. https://doi.org/10.1145/2364527.2364568
Uma Zalakain and Ornela Dardha. 2021. 𝜋 with Leftovers: A Mechanisation in Agda. In FORTE (LNCS, Vol. 12719). 157–174.

https://doi.org/10.1007/978-3-030-78089-0_9

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 107. Publication date: August 2022.

https://doi.org/10.1145/2951913.2951921
https://homepages.inf.ed.ac.uk/slindley/papers/fst.pdf
https://www.fabriziomontesi.com/teaching/ct-2020/files/chor-notes.pdf
https://www.fabriziomontesi.com/teaching/ct-2020/files/chor-notes.pdf
https://arxiv.org/abs/1803.01049
http://arxiv.org/abs/1803.01049
https://doi.org/10.1007/978-3-642-00590-9_23
https://doi.org/10.2307/421090
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1145/2603088.2603116
https://doi.org/10.1145/2603088.2603116
https://doi.org/10.1017/S0956796816000289
https://doi.org/10.1017/S0956796816000289
https://doi.org/10.1007/978-3-662-46678-0_1
https://doi.org/10.1145/1411286.1411290
https://doi.org/10.1145/3372885.3373818
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
https://doi.org/10.1145/3290343
https://www.doc.ic.ac.uk/research/technicalreports/2018/DTRS18-6.pdf
https://www.doc.ic.ac.uk/research/technicalreports/2018/DTRS18-6.pdf
https://doi.org/10.1007/978-3-662-54434-1_34
https://doi.org/10.1145/3354166.3354184
https://doi.org/10.1145/3354166.3354184
https://doi.org/10.1007/978-3-642-37036-6_20
https://doi.org/10.1145/3242173
https://doi.org/10.1145/2364527.2364568
https://doi.org/10.1007/978-3-030-78089-0_9

	Abstract
	1 Introduction
	2 MPGV by Example
	2.1 Global and Local Types
	2.2 Combined Session and Channel Initialization
	2.3 Interleaving and First-Class Endpoints
	2.4 Participant Redirecting
	2.5 Choice and Recursive Session Types
	2.6 Two Buyer Protocol
	2.7 Three Buyer Protocol and Session Delegation
	2.8 Endpoints in Data Structures
	2.9 Deadlock Freedom of MPGV

	3 The Semantics of MPGV
	3.1 Syntax and Operational Semantics
	3.2 Static Type System

	4 Translation from Binary to Multiparty
	5 The Deadlock and Leak Freedom Theorem
	6 Extension: Consistency without Global Types
	6.1 Defining Consistency without Global Types
	6.2 Global Types Imply Consistency

	7 Proof of Deadlock and Leak Freedom
	7.1 Runtime Type System
	7.2 The Buffer Invariant
	7.3 The Configuration Invariant
	7.4 Initialization and Preservation of the Invariant
	7.5 Proof of the Reachability Theorem

	8 Mechanization
	9 Related Work
	Acknowledgments
	References

