
Deadlock Freedom for Session Types Using Separation Logic

Jules Jacobs

Radboud University Nijmegen
julesjacobs@gmail.com

Joint work with Robbert Krebbers (RU) and Stephanie Balzer (CMU)

1 / 27

mailto:julesjacobs@gmail.com

Overview

I Channels for concurrency

I Operational semantics

I Session types

I Goal of the research project

I Typing channel references with separation logic

I The connectivity graph

I Deadlock freedom

2 / 27

Channels for concurrency

Example:

let c’ = fork(fun c =>

send(c, 3)

let k = recv(c)

if k < 10

then send(c,"hello")

else send(c,"hi")

close(c)

)

let n = recv(c’)

send(c’, 2*n)

let msg = recv(c’)

close(c’)

print(msg)

Channel operations:

I let c’ = fork(fun c => ...)

I send(c, msg)

I let msg = recv(c)

I close(c)

3 / 27

Operational model

State of the system: thread pool + channel buffers

Threads:

T1 T2 T3

T4 T5 T6

Channel buffers:

channel 0: msg01, msg02, . . . msg ′
01, msg ′

02, . . .

channel 1: msg11, msg12, . . . msg ′
11, msg ′

12, . . .

channel 2: msg21, msg22, . . . msg ′
21, msg ′

22, . . .

There are two buffers per channel!
In the program let c’ = fork(fun c => ...),
one buffer is for the messages from c to c’,
and the other is for messages from c’ to c.

4 / 27

Potential bugs
I Wrong type of message, e.g. string instead of int (type error):

let c’ = fork(fun c => send(c,"hi"); ...)

recv(c’) + 3

I Using a channel after close (use-after-free):

close(c); let msg = recv(c)

I Both sides do a receive (deadlock):

let c’ = fork(fun c => recv(c); ...)

recv(c’)

I Not closing a channel (leak):

fork(fun c => recv(c))

Ruling out these bugs is tricky:
Higher order channels: let c = fork(...) in send(d,c)

Closures that capture channels: let f = (fun x => ... c ...) in send(d,f)
5 / 27

Session types (Honda et al. 1998)

Session types (Honda et al. 1998) are a type system for ruling out these bugs.
A linear type system: variables must be used exactly once.

Examples:

let x = ... in

... x ...

=⇒ OK!

let x = ... in

... x ... x ...

=⇒ TYPE ERROR!

let x = ... in

... (no x) ...

=⇒ TYPE ERROR!

Send and receive must use functional style:

let c2 = send(c1 ,msg)

let (c3,msg) = recv(c2)

close(c3)

Close is required to get rid of variable c3!

Rules out 2 of 4 potential bugs immediately:

I Not closing a channel (leak)
Because variable c3 must be used.

I Using a channel after close (use-after-free)
Because the use close(c3) consumes variable c3.

6 / 27

Session types: channel protocols
Example: !Int, ?Bool, !String, End

Means: first send an Int, then receive a Bool, then send a String, then close the chanel.

send : (!A,R) x A -> R fork[R] : (dual(R) -> Unit) -> R

recv : (?A,R) -> R x A close : End -> Unit

let c1 = fork[!Int , ?Bool , !String , End](fun c1 ’ => ...)

// c1 : !Int , ?Bool , !String , End

// c1 ’ : ?Int , !Bool , ?String , End

let c2 = send(c1 ,3)

// c2 : ?Bool , !String , End

let (c3 ,b) = recv(c2)

// c3 : !String , End

let c4 = send(c3, "hello")

// c4 : End

close(c4)

Rules out local deadlocks (both sides try to receive)
7 / 27

Features & Extensions
Closures & higher order channels:

?(! String , ?Int , End), !(Bool -> Int), End

Recursive channel protocols:

T = ?Int , !String , T

Choice in channel protocols:

T = (?Int , !String , End) + (!Bool , ?Int , End)

Dependent channel protocols:

T = ?(i:Int) if i < 10 then (!String , End) else (?Bool , End)

Asynchronous subtyping:

(?Bool , !Int , R) <: (!Int , ?Bool , R)

Shared channels: controlled non-linear usage of channels protected by locks.

let l = newlock(c)

let d = fork(fun d’ => ... l ...) in ... l ...
8 / 27

Research goal (ongoing research)
Session types rule out:

I Type errors

I Use-after-free

I Leaks

I Deadlocks? Session types do rule out all deadlocks! (Honda et al. 1998)

Our goal: a proof of these 4 properties,

I Mechanised proof in Coq

I For a low-level operational semantics with buffers

I Reasoning about channel ownership at a high level using separation logic

I Supporting both locks and channels using connectivity graphs

Rest of the talk:
(1) What the formal statement of the theorems is like
(2) High level overview of the proof: separation logic & connectivity graph

9 / 27

Operational semantics (1)

I State of the system: state =

threads︷ ︸︸ ︷
list expr×(

buffers︷ ︸︸ ︷
N× Bool→fin list val)

I Grammar of expressions:

expr ::= val

| expr + expr

| let x = expr in expr

| send(expr, expr)

| recv(expr, expr)

| fork(expr)

| close(expr)

| . . .

I Values: val ::= n:nat | (val, val) | fun x =⇒ expr | chan(n:nat,b:bool) | . . .
10 / 27

Operational semantics (2)

Small-step operational semantics with inductively defined relations:

I pure step ⊆ expr× expr

I head step ⊆ (expr× buffers)× (expr× buffers×
spawned threads︷ ︸︸ ︷

list expr)

I ctx ⊆ expr→ expr

I ctx step ⊆ (expr× buffers)× (expr× buffers× list expr)

I step ⊆ (list expr× buffers)× (list expr× buffers)

11 / 27

Operational semantics (3)

In Coq:

Inductive head_step :

expr -> heap -> expr -> heap -> list expr -> Prop :=

| Pure_step : forall e e’ h,

pure_step e e’ -> head_step e h e’ h []

| Send_step : forall h c y buf ,

h !! (other c) = Some buf ->

head_step (Send (Val (ChanV c)) (Val y)) h

(Val (ChanV c)) (<[other c := buf ++ [y]]> h) []

| ...

12 / 27

Type system rules (1)
I Grammar of types:

type ::= unit

| type × type

| type → type

| chan type

| . . .

I Channel protocols:

chan type ::= !type, chan type

| ?type, chan type

| End

| . . .

13 / 27

Type system rules (2)
The type system is also inductively defined:

I Judgement: Γ ` e : t

I (· ` · : ·) ⊆ env× expr× type

I env = var→fin type

.

{x 7→ t} ` x : t
Var

n ∈ N
∅ ` n : Nat

Nat

Γ1 ` e1 : t1 → t2 Γ2 ` e2 : t1 Γ1 ∩ Γ2 = ∅
(Γ1 ∪ Γ2) ` e1 e2 : t2

App

Γ1 ` e1 : !t,R Γ2 ` e2 : t Γ1 ∩ Γ2 = ∅
(Γ1 ∪ Γ2) ` send(e1, e2) : R

Send

14 / 27

Properties that we want to prove

I Suppose we have a top level well-typed program ∅ ` e : unit

I We initialize the state with S0 = ([e], []) ⊆ threads× buffers

I We then run the operational semantics step ⊆ (threads× buffers)× (threads× buffers)
to get a new state S ′ = ([e1, e2, . . .], {(0, true) 7→ buf00, (0, false) 7→ buf01, . . . })

We want to establish these properties:
I Each expression ei in S ′ either

1. Is a unit value, or
2. Is waiting on recv(chan(n,b), v), or
3. Can take a step

I If S ′ can not take any further step, then

1. All the ei are unit values, and
2. All the buffers are empty

These properties rule out type errors, use-after-close, deadlocks, and leaks.

15 / 27

Method: progress & preservation
Idea of progress & preservation:
Choose a set of well-behaved states W ⊆ (threads× buffers).

I Show that S0 ∈W

I Preservation: Show that if S ∈W and (S , S ′) ∈ step, then S ′ ∈W .

I Progress: Show that the properties that we want hold for states in W .

What do we want of W?
Choose W such that ([e1, e2, . . .], {(0, true) 7→ buf00, (0, false) 7→ buf01, . . . }) ∈W if

I All the expressions ei are well-typed.

I All the values in the buffers are well-typed.
I For each channel n ∈ N, there is exactly one chan(n, true) and one chan(n, false).

I These channel references may occur inside one of the ei or inside one of the buffers.
I The types of the chan(n, b) must be consistent with the values inside the buffers.

I The connectivity between channels and threads is acyclic.
I Otherwise we can have a deadlock due to cyclic waiting.

16 / 27

Two type systems: user facing type system & run-time type system

I The initial expression e does not have any chan(n, b) in it

I Once the operational semantics steps, these channel references apprear inside the ei
I And inside the buffers (when sending channels over channels)

Problem: The type system does not know what to do with chan(n, b)
Solution: Define an extended type system that can handle chan(n, b)

Extended type system judgement: Γ,Σ ` e : t

I Γ tells us the types of variables

I Σ tells us the types of chan(n, b)’s

Both Γ, Σ split up disjointly over subexpressions.

17 / 27

Run-time type system: separation logic
Inference rule of extended type system:

Γ1,Σ1 ` e1 : t1 → t2 Γ2,Σ2 ` e2 : t1 Γ1 ∩ Γ2 = ∅ Σ1 ∩ Σ2 = ∅
(Γ1 ∪ Γ2), (Σ1 ∪ Σ2) ` e1 e2 : t2

We use separation logic to hide the Σ’s:

Γ1 ` e1 : t1 → t2 ∗ Γ2 ` e2 : t1 Γ1 ∩ Γ2 = ∅
(Γ1 ∪ Γ2) ` e1 e2 : t2

*

Instead of an implication with conjunction between the premises,
we have a magic wand with separating conjection between the premises.

We need to transfer ownership of channels as the expressions take steps, and as values get
put in and taken out of buffers.
Separation logic allows us to reason about linear channel ownership at a high level.
Low-level view: Σ is split up and re-distributed over parts of the state as the state evolves.
High-level view: separation logic invariant hold, ownership gets transfered.

18 / 27

The connectivity graph

I A graph containing threads (boxes) and channels (circles)
I An arrow T → C means that thread T has a reference to channel C

I This means that T contains a channel reference to C

I An arrow C1→ C2 means that channel C1 has a reference to channel C2
I This means that somewhere in the buffer of C1 there is a reference to C2

T1

C1

T2

C2 T3 C3

T4

19 / 27

Deadlocks
Cyclic connectivity graphs can result in deadlock:

T1

C1

T2 C2 T3

C3

T4C4

T1 waits to receive from C1, then sends to C4
T2 waits to receive from C2, then sends to C1
T3 waits to receive from C3, then sends to C2
T4 waits to receive from C4, then sends to C3

Invariant: the connectivity graph is acyclic
20 / 27

The evolution of the connectivity graph: initial

T1

C1

T2

C2 T3 C3

T4

21 / 27

The evolution of the connectivity graph: fork

T1

C1

T2

C2 T3 C3

T4

C4 T5

22 / 27

The evolution of the connectivity graph: send C1 over C4

T1

C1

T2

C2 T3 C3

T4

C4 T5

23 / 27

The evolution of the connectivity graph: receive C1 over C4

T1

C1

T2

C2 T3 C3

T4

C4 T5

24 / 27

Concurrent objects
We can generalize from channels to other concurrent objects, such as locks.

T1

T2

L1 T3 C3

T4

C4 T5

Required property: no local deadlock
I Channels: local deadlock means both sides do a receive

I Ruled out by type system
I Locks: local deadlock means all threads are waiting on the lock

I Can’t happen: one of the threads must have succesfully acquired the lock

Connectivity graph is a tree: no local deadlock =⇒ no deadlock
25 / 27

Coq proof

The Coq proof is work in progress...

I Language & type system

I Separation logic

I Run-time type system

I Type-safety invariant

I Library for tree reasoning

I Preservation of type safety invariant

I Preservation of tree invariant

I Invariant =⇒ desired properties

I Extensions

26 / 27

Questions?

27 / 27

