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History

Verification of programs with             Using 

   mutable local variables                       Hoare logic (Hoare) 

+ pointers & data structures                  Separation logic (Reynolds)


+ shared-memory concurrency             Concurrent separation logic (O’Hearn)

{P} e {Q}
If P holds, and we run e, then Q holds

If P holds, then e is safe, and afterwards Q holds
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Proof Mode

Definition lock_inv (γ : gname) (l : loc) (R : iProp Σ) : iProp Σ := 
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Definition locked (γ : gname) : iProp Σ := own γ (Excl ()). 

Definition newlock : val := λ: <>, ref #false. 

Definition acquire : val := rec: "acquire" "l" := 
if: CAS "l" #false #true then #() else "acquire" “l". 

Definition release : val := λ: "l", "l" <- #false. 

Lemma acquire_spec γ lk R : 
   {{{ is_lock γ lk R }}} acquire lk {{{ RET #(); locked γ ∗ R }}}. 
Proof. 
    iIntros (Φ) "#Hl HΦ". iLöb as "IH". wp_rec. 
    wp_apply (try_acquire_spec with "Hl"). iIntros ([]). 
    - iIntros "[Hlked HR]". wp_if. iApply "HΦ"; auto with iFrame. 
    - iIntros "_". wp_if. iApply ("IH" with "[HΦ]"). auto. 
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Iris has many innovations over CSL!


I will not talk about these


Ask me, and I’ll tell you what I know
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{P} e {Q}
If P holds, then e is safe, and afterwards Q holds

safe(e) := “no illegal operations when running e”


(based on operational semantics for HeapLang in Coq, with heap + thread pool)

Partial correctness: e may loop! Very partial: e may deadlock!
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The Masterplan

Build a fully verified software stack

Hypervisor, OS, compiler, type system, database,


web server, …, and your code!

Free theorems from typesAll programming paradigms

Fully mechanised proofs

Strong adequacy theorems

End-to-end theorems

Proof automation

Strong reasoning principles

Modular proofs


