
Deadlock-Free Separation Logic
Linearity Yields Progress for Dependent Higher-Order Message Passing

Jules Jacobs Jonas Kastberg Hinrichsen Robbert Krebbers

POPL’24

Deadlock-Free Separation Logic
Linearity Yields Progress for Dependent Higher-Order Message Passing

Jules Jacobs Jonas Kastberg Hinrichsen Robbert Krebbers

POPL’24

Jules Jacobs, 2023-12-11

The Iris Masterplan

History

History
{P} e {Q}

History
{P} e {Q}

If P holds, and we run e, then Q holds

History
{P} e {Q}

If P holds, and we run e, then Q holds

History
{P} e {Q}

If P holds, and we run e, then Q holds
If P holds, then e is safe, and afterwards Q holds

History

Verification of programs with Using

 mutable local variables Hoare logic (Hoare)

+ pointers & data structures Separation logic (Reynolds)

+ shared-memory concurrency Concurrent separation logic (O’Hearn)

{P} e {Q}
If P holds, and we run e, then Q holds

If P holds, then e is safe, and afterwards Q holds

What is Iris?

What is Iris?

What is Iris, really?

What is Iris, really?

Coq

What is Iris, really?

Coq

What is Iris, really?

Coq

HeapLang {P} e {Q}
Definition newlock : val := λ: <>, ref #false.

Definition acquire : val := rec: "acquire" "l" :=
if: CAS "l" #false #true then #() else "acquire" “l".

Definition release : val := λ: "l", "l" <- #false.

What is Iris, really?

Coq

HeapLang {P} e {Q}

iProp {P} e {Q}
Definition lock_inv (γ : gname) (l : loc) (R : iProp Σ) : iProp Σ :=
 ∃ b : bool, l ↦ #b ∗ if b then True else own γ (Excl ()) ∗ R.

Definition is_lock (γ : gname) (lk : val) (R : iProp Σ) : iProp Σ :=
 ∃ l: loc, ⌜lk = #l⌝ ∧ inv N (lock_inv γ l R).

Definition locked (γ : gname) : iProp Σ := own γ (Excl ()).

Definition newlock : val := λ: <>, ref #false.

Definition acquire : val := rec: "acquire" "l" :=
if: CAS "l" #false #true then #() else "acquire" “l".

Definition release : val := λ: "l", "l" <- #false.

What is Iris, really?

Coq

HeapLang {P} e {Q}

iProp {P} e {Q}

Hoare Triples {P} e {Q}

Definition lock_inv (γ : gname) (l : loc) (R : iProp Σ) : iProp Σ :=
 ∃ b : bool, l ↦ #b ∗ if b then True else own γ (Excl ()) ∗ R.

Definition is_lock (γ : gname) (lk : val) (R : iProp Σ) : iProp Σ :=
 ∃ l: loc, ⌜lk = #l⌝ ∧ inv N (lock_inv γ l R).

Definition locked (γ : gname) : iProp Σ := own γ (Excl ()).

Definition newlock : val := λ: <>, ref #false.

Definition acquire : val := rec: "acquire" "l" :=
if: CAS "l" #false #true then #() else "acquire" “l".

Definition release : val := λ: "l", "l" <- #false.

Lemma acquire_spec γ lk R :
 {{{ is_lock γ lk R }}} acquire lk {{{ RET #(); locked γ ∗ R }}}.

What is Iris, really?

Coq

HeapLang {P} e {Q}

iProp {P} e {Q}

Hoare Triples {P} e {Q}

Proof Mode

Definition lock_inv (γ : gname) (l : loc) (R : iProp Σ) : iProp Σ :=
 ∃ b : bool, l ↦ #b ∗ if b then True else own γ (Excl ()) ∗ R.

Definition is_lock (γ : gname) (lk : val) (R : iProp Σ) : iProp Σ :=
 ∃ l: loc, ⌜lk = #l⌝ ∧ inv N (lock_inv γ l R).

Definition locked (γ : gname) : iProp Σ := own γ (Excl ()).

Definition newlock : val := λ: <>, ref #false.

Definition acquire : val := rec: "acquire" "l" :=
if: CAS "l" #false #true then #() else "acquire" “l".

Definition release : val := λ: "l", "l" <- #false.

Lemma acquire_spec γ lk R :
 {{{ is_lock γ lk R }}} acquire lk {{{ RET #(); locked γ ∗ R }}}.
Proof.
 iIntros (Φ) "#Hl HΦ". iLöb as "IH". wp_rec.
 wp_apply (try_acquire_spec with "Hl"). iIntros ([]).
 - iIntros "[Hlked HR]". wp_if. iApply "HΦ"; auto with iFrame.
 - iIntros "_". wp_if. iApply ("IH" with "[HΦ]"). auto.
Qed.

What is Iris, really?

Coq

HeapLang {P} e {Q}

iProp {P} e {Q}

Hoare Triples {P} e {Q}

Proof Mode

Definition lock_inv (γ : gname) (l : loc) (R : iProp Σ) : iProp Σ :=
 ∃ b : bool, l ↦ #b ∗ if b then True else own γ (Excl ()) ∗ R.

Definition is_lock (γ : gname) (lk : val) (R : iProp Σ) : iProp Σ :=
 ∃ l: loc, ⌜lk = #l⌝ ∧ inv N (lock_inv γ l R).

Definition locked (γ : gname) : iProp Σ := own γ (Excl ()).

Definition newlock : val := λ: <>, ref #false.

Definition acquire : val := rec: "acquire" "l" :=
if: CAS "l" #false #true then #() else "acquire" “l".

Definition release : val := λ: "l", "l" <- #false.

Lemma acquire_spec γ lk R :
 {{{ is_lock γ lk R }}} acquire lk {{{ RET #(); locked γ ∗ R }}}.
Proof.
 iIntros (Φ) "#Hl HΦ". iLöb as "IH". wp_rec.
 wp_apply (try_acquire_spec with "Hl"). iIntros ([]).
 - iIntros "[Hlked HR]". wp_if. iApply "HΦ"; auto with iFrame.
 - iIntros "_". wp_if. iApply ("IH" with "[HΦ]"). auto.
Qed.

Iris has many innovations over CSL!

I will not talk about these

Ask me, and I’ll tell you what I know

Iris’ adequacy theorem

Iris’ adequacy theorem

{P} e {Q}
If P holds, then e is safe, and afterwards Q holds

Iris’ adequacy theorem

{P} e {Q}
If P holds, then e is safe, and afterwards Q holds

safe(e) := “no illegal operations when running e”

(based on operational semantics for HeapLang in Coq, with heap + thread pool)

Iris’ adequacy theorem

{P} e {Q}
If P holds, then e is safe, and afterwards Q holds

safe(e) := “no illegal operations when running e”

(based on operational semantics for HeapLang in Coq, with heap + thread pool)

Partial correctness: e may loop!

Iris’ adequacy theorem

{P} e {Q}
If P holds, then e is safe, and afterwards Q holds

safe(e) := “no illegal operations when running e”

(based on operational semantics for HeapLang in Coq, with heap + thread pool)

Partial correctness: e may loop! Very partial: e may deadlock!

Why are there 91 Iris papers?

Why are there 91 Iris papers?

Deadlock freedom (for message passing)

Why are there 91 Iris papers?

Deadlock freedom (for message passing)

Garbage collection (disentanglement)

Why are there 91 Iris papers?

Deadlock freedom (for message passing)

Garbage collection (disentanglement)

Probabilistic programming (async coupling)

Why are there 91 Iris papers?

Deadlock freedom (for message passing)

Garbage collection (disentanglement)

Probabilistic programming (async coupling)

Distributed programming (refinement)

Why are there 91 Iris papers?

Deadlock freedom (for message passing)

Garbage collection (disentanglement)

Probabilistic programming (async coupling)

Distributed programming (refinement)

Arm semantics (weak memory model)

Why are there 91 Iris papers?

Deadlock freedom (for message passing)

Garbage collection (disentanglement)

Probabilistic programming (async coupling)

Distributed programming (refinement)

Arm semantics (weak memory model)

Iris + CompCert

Why are there 91 Iris papers?

Deadlock freedom (for message passing)

Garbage collection (disentanglement)

Probabilistic programming (async coupling)

Distributed programming (refinement)

Arm semantics (weak memory model)

Automated proofs (with concurrency)

Iris + CompCert

Why are there 91 Iris papers?

Deadlock freedom (for message passing)

Garbage collection (disentanglement)

Probabilistic programming (async coupling)

Distributed programming (refinement)

Arm semantics (weak memory model)

Automated proofs (with concurrency)

Multi-language interoperability

Iris + CompCert

Why are there 91 Iris papers?

Deadlock freedom (for message passing)

Garbage collection (disentanglement)

Probabilistic programming (async coupling)

Distributed programming (refinement)

Arm semantics (weak memory model)

Automated proofs (with concurrency)

Multi-language interoperability

C verification (automated)

Iris + CompCert

Why are there 91 Iris papers?

Deadlock freedom (for message passing)

Garbage collection (disentanglement)

Probabilistic programming (async coupling)

Distributed programming (refinement)

Arm semantics (weak memory model)

Automated proofs (with concurrency)

Multi-language interoperability

C verification (automated)

Effect handlers

Iris + CompCert

Why are there 91 Iris papers?

Deadlock freedom (for message passing)

Garbage collection (disentanglement)

Probabilistic programming (async coupling)

Distributed programming (refinement)

Arm semantics (weak memory model)

Automated proofs (with concurrency)

Multi-language interoperability

C verification (automated)

Effect handlers
Message passing

Iris + CompCert

Why are there 91 Iris papers?

Deadlock freedom (for message passing)

Garbage collection (disentanglement)

Probabilistic programming (async coupling)

Distributed programming (refinement)

Arm semantics (weak memory model)

Automated proofs (with concurrency)

Multi-language interoperability

C verification (automated)

Effect handlers
Message passing

Time complexity

Iris + CompCert

Why are there 91 Iris papers?

Deadlock freedom (for message passing)

Garbage collection (disentanglement)

Probabilistic programming (async coupling)

Distributed programming (refinement)

Arm semantics (weak memory model)

Automated proofs (with concurrency)

Multi-language interoperability

C verification (automated)

Effect handlers
Message passing

Time complexity

Hyperproperties

Iris + CompCert

Why are there 91 Iris papers?

Deadlock freedom (for message passing)

Garbage collection (disentanglement)

Probabilistic programming (async coupling)

Distributed programming (refinement)

Arm semantics (weak memory model)

Automated proofs (with concurrency)

Multi-language interoperability

C verification (automated)

Effect handlers
Message passing

Time complexity

Hyperproperties

Rust type system (soundness proof)

Iris + CompCert

Why are there 91 Iris papers?

Deadlock freedom (for message passing)

Garbage collection (disentanglement)

Probabilistic programming (async coupling)

Distributed programming (refinement)

Arm semantics (weak memory model)

Automated proofs (with concurrency)

Multi-language interoperability

C verification (automated)

Effect handlers
Message passing

Time complexity

Hyperproperties

Rust type system (soundness proof)

Original Iris paperIris + CompCert

Why are there 91 Iris papers?

Deadlock freedom (for message passing)

Garbage collection (disentanglement)

Probabilistic programming (async coupling)

Distributed programming (refinement)

Arm semantics (weak memory model)

Automated proofs (with concurrency)

Multi-language interoperability

C verification (automated)

Effect handlers
Message passing

Time complexity

Hyperproperties

Rust type system (soundness proof)

Original Iris paper

Every paper re-uses a different subset of Iris

Iris + CompCert

Why are there 91 Iris papers?

Deadlock freedom (for message passing)

Garbage collection (disentanglement)

Probabilistic programming (async coupling)

Distributed programming (refinement)

Arm semantics (weak memory model)

Automated proofs (with concurrency)

Multi-language interoperability

C verification (automated)

Effect handlers
Message passing

Time complexity

Hyperproperties

Rust type system (soundness proof)

Original Iris paper

Every paper re-uses a different subset of Iris

[1] re-uses step-indexing and the Iris proof mode

Iris + CompCert

Why are there 91 Iris papers?

Deadlock freedom (for message passing)

Garbage collection (disentanglement)

Probabilistic programming (async coupling)

Distributed programming (refinement)

Arm semantics (weak memory model)

Automated proofs (with concurrency)

Multi-language interoperability

C verification (automated)

Effect handlers
Message passing

Time complexity

Hyperproperties

Rust type system (soundness proof)

Original Iris paper

Every paper re-uses a different subset of Iris

[1] re-uses step-indexing and the Iris proof mode

Comparison: 200+ papers on effect handlers
& way more on probabilistic programming

Iris + CompCert

The Masterplan

The Masterplan

Build a fully verified software stack

Hypervisor, OS, compiler, type system, database,

web server, …, and your code!

The Masterplan

Build a fully verified software stack

Hypervisor, OS, compiler, type system, database,

web server, …, and your code!

Free theorems from typesAll programming paradigms

Fully mechanised proofs

Strong adequacy theorems

End-to-end theorems

Proof automation

Strong reasoning principles

Modular proofs

