Paradoxes of Probabilistic Programming

and how to condition on events of measure zero with infinitesimal probabilities (to appear at POPL'21)

Jules Jacobs

TU Delft → Radboud University Nijmegen julesjacobs@gmail.com

These slides: julesjacobs.com/slides/measurezero.pdf

November 25, 2020

- Domain specific language for statistical and machine learning models
- Normal programming language extended with rand, observe, and run

Example:

- ▶ Men's height is distributed according to Normal(1.8, 0.5) meters
- Women's height is distributed according to Normal(1.7, 0.5) meters
- > A scientist randomly samples a man and a woman and compares their height
- The scientist tells us that the heights are equal

Question: What's the expected value of the height in this situation?

Example:

- ▶ Men's height is distributed according to Normal(1.8, 0.5) meters
- Women's height is distributed according to Normal(1.7, 0.5) meters
- > A scientist randomly samples a man and a woman and compares their height
- The scientist tells us that the heights are equal

Question: What's the expected value of the height in this situation?

```
function meters(){
    h = rand(Normal(1.7, 0.5))
    observe(Normal(1.8, 0.5), h)
    return h
}
samples = run(meters, 1000)
estimate = average(samples)
Answer: ≈ 1.75
```

Example:

- ▶ Men's height is distributed according to Normal(1.8, 0.5) meters
- Women's height is distributed according to Normal(1.7, 0.5) meters
- ▶ A scientist randomly samples a man and a woman and compares their height
- The scientist tells us that the heights are equal

Question: What's the expected value of the height in this situation?

```
function meters(){
                                    function centimeters(){
  h = rand(Normal(1.7, 0.5))
                                      h = rand(Normal(170, 50))
  observe(Normal(1.8, 0.5), h)
                                      observe(Normal(180, 50), h)
  return h
                                      return h
}
                                    }
samples = run(meters, 1000)
                                    samples = run(meters, 1000)
estimate = average(samples)
                                    estimate = average(samples)
Answer: \approx 1.75
                                    Answer: \approx 175
```

Suppose the scientist is lazy, and only does the measurement half of the time...

Suppose the scientist is lazy, and only does the measurement half of the time...

Meters:

```
h = rand(Normal(1.7, 0.5))
if(flip(0.5)){
    observe(Normal(1.8, 0.5), h)
}
return h
Answer: ≈ 1.721
```

Suppose the scientist is lazy, and only does the measurement half of the time...

Meters:

```
h = rand(Normal(1.7, 0.5))
if(flip(0.5)){
    observe(Normal(1.8, 0.5), h)
}
return h
Answer: ≈ 1.721
```

Centimeters:

```
h = rand(Normal(170, 50))
if(flip(0.5)){
    observe(Normal(180, 50), h)
}
return h
Answer: ≈ 170.2
```

> The answer depends on whether the scientist uses meters or centimeters!

Suppose the scientist is lazy, and only does the measurement half of the time...

Meters:

```
h = rand(Normal(1.7, 0.5))
if(flip(0.5)){
    observe(Normal(1.8, 0.5), h)
}
return h
Answer: ≈ 1.721
```

```
h = rand(Normal(170, 50))
if(flip(0.5)){
    observe(Normal(180, 50), h)
}
return h
Answer: ≈ 170.2
```

- The answer depends on whether the scientist uses meters or centimeters!
- Happens if we run this with importance sampling in Anglican

Suppose the scientist is lazy, and only does the measurement half of the time...

Meters:

```
h = rand(Normal(1.7, 0.5))
if(flip(0.5)){
    observe(Normal(1.8, 0.5), h)
}
return h
Answer: ≈ 1.721
```

```
h = rand(Normal(170, 50))
if(flip(0.5)){
    observe(Normal(180, 50), h)
}
return h
Answer: ≈ 170.2
```

- The answer depends on whether the scientist uses meters or centimeters!
- Happens if we run this with importance sampling in Anglican
- The issue is fundamental and not limited to Anglican

Suppose the scientist is lazy, and only does the measurement half of the time...

Meters:

```
h = rand(Normal(1.7, 0.5))
if(flip(0.5)){
    observe(Normal(1.8, 0.5), h)
}
return h
Answer: ≈ 1.721
```

```
h = rand(Normal(170, 50))
if(flip(0.5)){
    observe(Normal(180, 50), h)
}
return h
Answer: ≈ 170.2
```

- The answer depends on whether the scientist uses meters or centimeters!
- Happens if we run this with importance sampling in Anglican
- The issue is fundamental and not limited to Anglican
- Even happens in formal operational semantics (e.g. Commutative or Quasi-Borel)

Suppose the scientist is lazy, and only does the measurement half of the time...

Meters:

```
h = rand(Normal(1.7, 0.5))
if(flip(0.5)){
    observe(Normal(1.8, 0.5), h)
}
return h
Answer: ≈ 1.721
```

```
h = rand(Normal(170, 50))
if(flip(0.5)){
    observe(Normal(180, 50), h)
}
return h
Answer: ≈ 170.2
```

- The answer depends on whether the scientist uses meters or centimeters!
- Happens if we run this with importance sampling in Anglican
- The issue is fundamental and not limited to Anglican
- Even happens in formal operational semantics (e.g. Commutative or Quasi-Borel)
- Unclear what the answer should be, or whether this program should be disallowed

Objection: you shouldn't do observe a variable number of times based on coin flip

Suppose the scientist is drunk, and measures the weight half of the time...

Objection: you shouldn't do observe a variable number of times based on coin flip

Suppose the scientist is drunk, and measures the weight half of the time...

```
h = rand(Normal(1.7, 0.5))
w = rand(Normal(60, 10))
if(flip(0.5)){
    observe(Normal(1.8, 0.5), h)
}else{
    observe(Normal(70, 10), w)
}
return h
Answer: ≈ 1.75
```

Objection: you shouldn't do observe a variable number of times based on coin flip

Suppose the scientist is drunk, and measures the weight half of the time...

```
h = rand(Normal(170, 50))
h = rand(Normal(1.7, 0.5))
w = rand(Normal(60, 10))
                                    w = rand(Normal(60, 10))
if(flip(0.5)){
                                    if(flip(0.5)){
  observe(Normal(1.8, 0.5), h)
                                       observe(Normal(180, 50), h)
}else{
                                    }else{
  observe(Normal(70, 10), w)
                                       observe(Normal(70, 10), w)
}
                                    3
return h
                                    return h
Answer: \approx 1.75
                                    Answer: \approx 170
```

- The same number of observes regardless of the outcome of the coin flip
- The output still depends on whether we use meters or centimeters

Objection: you shouldn't do observe inside a conditional

Suppose the scientist uses a ruler marked in log scale...

Objection: you shouldn't do observe inside a conditional

Suppose the scientist uses a ruler marked in log scale...

Original program:

```
h = rand(Normal(1.7,0.5))
observe(Normal(1.8,0.5),h)
return h
```

Objection: you shouldn't do observe inside a conditional

Suppose the scientist uses a ruler marked in log scale...

Original program:

```
h = rand(Normal(1.7,0.5))
observe(Normal(1.8,0.5),h)
return h
```

Logarithmic ruler program:

```
H = rand(LogNormal(1.7,0.5))
observe(LogNormal(1.8,0.5),H)
return log(H)
```

Answer: 1.75

```
Answer: 1.62
```

Whether we use linear scale or log scale shouldn't matter, just like meters or centimeters shouldn't matter

Objection: you shouldn't do observe inside a conditional

Suppose the scientist uses a ruler marked in log scale...

Original program:

```
h = rand(Normal(1.7,0.5))
observe(Normal(1.8,0.5),h)
return h
```

Logarithmic ruler program:

```
H = rand(LogNormal(1.7,0.5))
observe(LogNormal(1.8,0.5),H)
return log(H)
```

```
Answer: 1.62
```

- Whether we use linear scale or log scale shouldn't matter, just like meters or centimeters shouldn't matter
- No conditionals at all, but the output still depends on the scale we use

Objection: you shouldn't do observe inside a conditional

Suppose the scientist uses a ruler marked in log scale...

Original program:

```
h = rand(Normal(1.7,0.5))
observe(Normal(1.8,0.5),h)
return h
```

Answer: 1.75

Logarithmic ruler program:

```
H = rand(LogNormal(1.7,0.5))
observe(LogNormal(1.8,0.5),H)
return log(H)
```

- Whether we use linear scale or log scale shouldn't matter, just like meters or centimeters shouldn't matter
- No conditionals at all, but the output still depends on the scale we use
- What do probabilistic programs really mean?

Objection: you shouldn't do observe inside a conditional

Suppose the scientist uses a ruler marked in log scale...

Original program:

```
h = rand(Normal(1.7,0.5))
observe(Normal(1.8,0.5),h)
return h
```

Answer: 1.75

Logarithmic ruler program:

```
H = rand(LogNormal(1.7,0.5))
observe(LogNormal(1.8,0.5),H)
return log(H)
```

- Whether we use linear scale or log scale shouldn't matter, just like meters or centimeters shouldn't matter
- No conditionals at all, but the output still depends on the scale we use
- What do probabilistic programs really mean?
- What does probililistic conditioning really mean?

Objection: you shouldn't do observe inside a conditional

Suppose the scientist uses a ruler marked in log scale...

Original program:

```
h = rand(Normal(1.7,0.5))
observe(Normal(1.8,0.5),h)
return h
```

Answer: 1.75

Logarithmic ruler program:

```
H = rand(LogNormal(1.7,0.5))
observe(LogNormal(1.8,0.5),H)
return log(H)
```

- Whether we use linear scale or log scale shouldn't matter, just like meters or centimeters shouldn't matter
- No conditionals at all, but the output still depends on the scale we use
- What do probabilistic programs really mean?
- What does probililistic conditioning really mean?
- Related to the Borel-Komolgorov paradox

Overview

Problem:

- Probabilistic programs are not invariant under parameter transformations
- It's not clear what observe really means

Overview

Problem:

- Probabilistic programs are not invariant under parameter transformations
- It's not clear what observe really means

Key ideas:

- $1. \ \mbox{Figure out what observe should do, by analogy with the discrete case$
- 2. Change the language: observe conditions on intervals instead of points
- 3. Take interval width to be infinitesimally small to condition on measure zero events

Overview

Problem:

- Probabilistic programs are not invariant under parameter transformations
- It's not clear what observe really means

Key ideas:

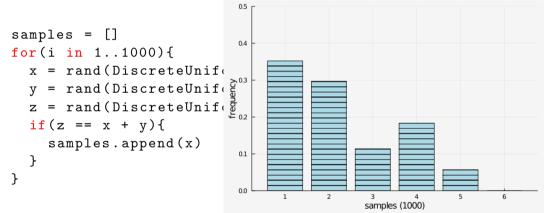
- $1. \ \mbox{Figure out what observe should do, by analogy with the discrete case$
- 2. Change the language: observe conditions on intervals instead of points
- 3. Take interval width to be infinitesimally small to condition on measure zero events **Result:**
 - ▶ New language is invariant under arbitrary parameter transformations
 - Programs have clear probabilistic meaning via rejection sampling
 - Implemented as a DSL in Julia

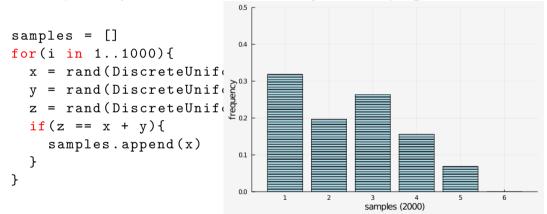
Probabilistic programming 101: manual rejection sampling

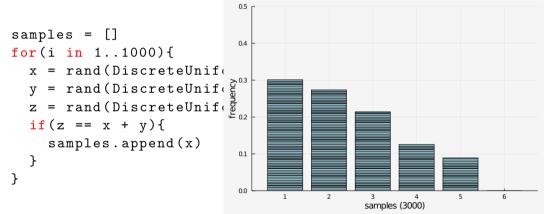
Someone: "I rolled three dice $x, y, z \in \{1, 2, 3, 4, 5, 6\}$ and observed that x + y = z."

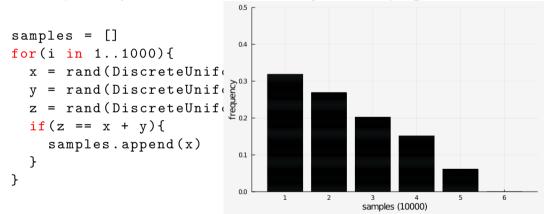
What's the probability distribution of x now?

```
samples = []
for(i in 1..1000){
    x = rand(DiscreteUniform(1,6))
    y = rand(DiscreteUniform(1,6))
    z = rand(DiscreteUniform(1,6))
    if(z == x + y){
        samples.append(x)
    }
}
```

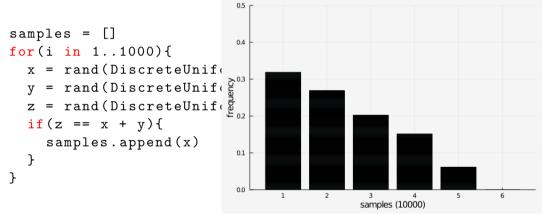






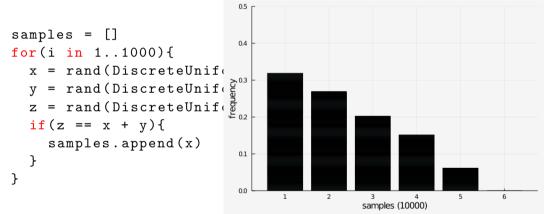


What's the probability distribution of x now? Use **rejection sampling**:



Key idea of PP: answer probabilistic inference questions by repeated simulation + filtering

What's the probability distribution of x now? Use **rejection sampling**:



Key idea of PP: answer probabilistic inference questions by repeated simulation + filtering \implies Probabilistic Programming Language = DSL for probabilistic simulations

Probabilistic programming 101: DSL for rejection sampling

Probabilistic programming language:

- Normal programming language + rand(D)
- observe(b) filtering/conditioning
- run(func, k) run simulation
 func() k times, return array of samples

Probabilistic programming 101: DSL for rejection sampling

Probabilistic programming language:

- Normal programming language + rand(D)
- observe(b) filtering/conditioning
- run(func, k) run simulation func() k times, return array of samples

```
function threeDice(){
  x = rand(DiscreteUniform(1,6))
  y = rand(DiscreteUniform(1,6))
  z = rand(DiscreteUniform(1,6))
  observe(z == x + y)
  return x
}
samples = run(threeDice, 1000)
```

Probabilistic programming 101: DSL for rejection sampling

Probabilistic programming language:

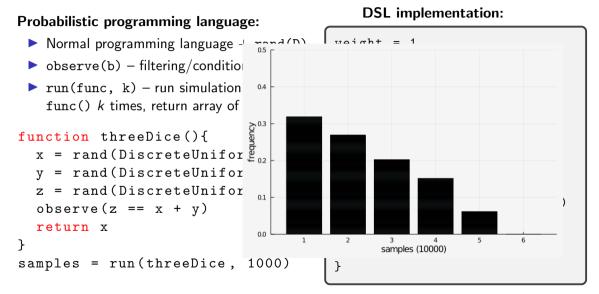
- Normal programming language + rand(D)
- observe(b) filtering/conditioning
- run(func, k) run simulation func() k times, return array of samples

```
function threeDice(){
  x = rand(DiscreteUniform(1,6))
  y = rand(DiscreteUniform(1,6))
  z = rand(DiscreteUniform(1,6))
  observe(z == x + y)
  return x
}
samples = run(threeDice, 1000)
```

DSL implementation:

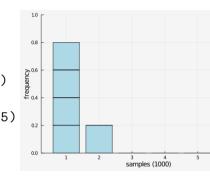
```
weight = 1
function observe(b){
  if(!b) weight = 0
}
function run(func, k){
  samples = []
  for(i in 1..k){
    weight = 1
    result = func()
    if(weight == 1){
      samples.append(result)
  return samples
```

Probabilistic programming 101: DSL for rejection sampling



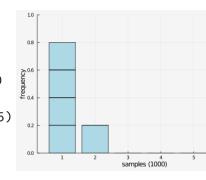
```
function multiDice(){
x = rand(DiscreteUniform(1.6))
 for (i in 1:x)
 v = rand(DiscreteUniform(1,6))
  observe(rand(DiscreteUniform(1,y)) == 3)
 }
 observe(rand(DiscreteUniform(1,6))+x == 5)
 return x
}
samples = run(multiDice, 1000)
```

```
function multiDice(){
x = rand(DiscreteUniform(1.6))
 for(i in 1:x){
 y = rand(DiscreteUniform(1,6))
  observe(rand(DiscreteUniform(1,y)) == 3)
 }
 observe(rand(DiscreteUniform(1,6))+x == 5)
 return x
}
samples = run(multiDice, 1000)
```



```
function multiDice(){
 x = rand(DiscreteUniform(1.6))
 for (i in 1:x)
  v = rand(DiscreteUniform(1.6))
  observe(rand(DiscreteUniform(1,y)) == 3)
 }
 observe(rand(DiscreteUniform(1,6))+x == 5)
 return x
}
samples = run(multiDice, 1000)
```

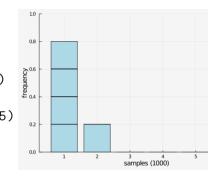
Problem: most samples get rejected \implies convergence is slow



```
function multiDice(){
 x = rand(DiscreteUniform(1.6))
 for (i in 1:x)
  y = rand(DiscreteUniform(1,6))
  observe(rand(DiscreteUniform(1,y)) == 3)
 }
 observe(rand(DiscreteUniform(1,6))+x == 5)
 return x
}
samples = run(multiDice, 1000)
```

Problem: most samples get rejected \implies convergence is slow **Standard solution: importance sampling**

- ▶ change observe(rand(D) == x) → observe(D,x)
- function observe(D,x){ weight *= probability(D,x) }
- weights are now numbers between 0..1 instead of only 0,1
- run returns an array of weighted samples

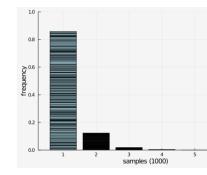


Probabilistic programming 101: importance sampling

```
function multiDice(){
 x = rand(DiscreteUniform(1.6))
 for (i in 1:x)
 v = rand(DiscreteUniform(1,6))
  observe(DiscreteUniform(1,y), 3)
 }
 observe(DiscreteUniform(1,6), 5-x)
 return x
}
samples = run(multiDice, 1000)
```

Problem: most samples get rejected \implies convergence is slow **Solution:**

- ▶ change observe(rand(D) == x) → observe(D,x)
- function observe(D,x){ weight *= probability(D,x) }
- weights are now numbers between 0..1 instead of only 0,1
- run returns an array of weighted samples



Continuous distributions are problematic because probability(D,x) = 0.

When doing observe(D, x) for continuous distributions D,

- Rejection sampling rejects 100% of the trials
- Importance sampling only produces trials with weight = 0

Continuous distributions are problematic because probability(D,x) = 0.

When doing observe(D, x) for continuous distributions D,

- Rejection sampling rejects 100% of the trials
- Importance sampling only produces trials with weight = 0

Standard solution: use the probability density function pdf(D,x) instead.

function observe(D,x){ weight *= probability(D,x) }

 \mapsto

function observe(D,x){ weight *= pdf(D,x) }

Continuous distributions are problematic because probability(D,x) = 0.

When doing observe(D, x) for continuous distributions D,

- Rejection sampling rejects 100% of the trials
- Importance sampling only produces trials with weight = 0

Standard solution: use the probability density function pdf(D,x) instead.

function observe(D,x){ weight *= probability(D,x) }

 \mapsto

function observe(D,x){ weight *= pdf(D,x) }

Intuition: $pdf(D, x) \propto$ the probability that rand(D) is close to x. Formally:

$$\operatorname{cdf}(D, x) = \mathbb{P}[\operatorname{rand}(D) < x]$$
 $\operatorname{pdf}(D, x) = \frac{d}{dx}\operatorname{cdf}(D, x)$

End of probabilistic programming 101.

Continuous distributions are problematic because probability(D,x) = 0.

When doing observe(D, x) for continuous distributions D,

- Rejection sampling rejects 100% of the trials
- Importance sampling only produces trials with weight = 0

Standard solution: use the probability density function pdf(D,x) instead.

function observe(D,x){ weight *= probability(D,x) }

 \mapsto

function observe(D,x){ weight *= pdf(D,x) }

Intuition: $pdf(D, x) \propto$ the probability that rand(D) is close to x. Formally:

$$\mathsf{cdf}(D,x) = \mathbb{P}[\mathsf{rand}(D) < x]$$
 $\mathsf{pdf}(D,x) = \frac{d}{dx}\mathsf{cdf}(D,x)$

End of probabilistic programming 101. Using the pdf instead of the probability is the source of the strange behaviour!

What went wrong: conditionals

Recall the drunk scientist:

```
if(flip(0.5)){
   observe(Normal(1.8, 0.5), h)
}else{
   observe(Normal(70, 10), w)
}
```

```
function observe(D,x){
   weight *= pdf(D,x)
}
```

What went wrong: conditionals

Recall the drunk scientist:

```
if(flip(0.5)){
   observe(Normal(1.8, 0.5), h)
}else{
   observe(Normal(70, 10), w)
}
```

```
function observe(D,x){
   weight *= pdf(D,x)
}
```

- An observe(D, x) call multiplies the weight by pdf(D, x)
- The pdf is not unitless! pdf(Normal(μ, σ), x) = $\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$
- ▶ The weight has units m^{-1} in some trials and kg^{-1} in other trials
- Results in unit errors when computing the weighted average:

$$\mathbb{E}[bmi] \approx \frac{\sum_{k=1}^{N} (weight_k) \cdot (bmi_k)}{\sum_{k=1}^{N} (weight_k)}$$

• The sum adds $m^{-1} + kg^{-1}!$

What went wrong: nonlinear parameter transformations Recall the log scale scientist:

observe(Normal(1.8, 0.5), h) vs observe(LogNormal(1.8, 0.5), H)

Conditioning on events of measure zero is ambiguous!

What went wrong: nonlinear parameter transformations Recall the log scale scientist:

observe(Normal(1.8, 0.5), h) vs observe(LogNormal(1.8, 0.5), H)

Conditioning on events of measure zero is ambiguous!

 $egin{aligned} & \mathcal{A}_\epsilon = \{(x,y) \in \mathbb{R}^2: |x-y| \leq \epsilon\} \ & \mathcal{B}_\epsilon = \{(x,y) \in \mathbb{R}^2: |\exp(x) - \exp(y)| \leq \epsilon\} \end{aligned}$

What went wrong: nonlinear parameter transformations Recall the log scale scientist:

observe(Normal(1.8, 0.5), h) vs observe(LogNormal(1.8, 0.5), H)

Conditioning on events of measure zero is ambiguous!

 $egin{aligned} & \mathcal{A}_\epsilon = \{(x,y) \in \mathbb{R}^2: |x-y| \leq \epsilon\} \ & \mathcal{B}_\epsilon = \{(x,y) \in \mathbb{R}^2: |\exp(x) - \exp(y)| \leq \epsilon\} \end{aligned}$

"Although the sequences A_{ϵ} and B_{ϵ} tend to the same limit "x = y", the conditional densities $\mathbb{P}(x|A_{\epsilon})$ and $\mathbb{P}(x|B_{\epsilon})$ tend to different limits. As we see from this, merely to specify "x = y" without any qualifications is ambiguous. Whenever we have a probability density on one space and we wish to generate from it one on a subspace of measure zero, the only safe procedure is to pass to an explicitly defined limit by a process like A_{ϵ} and B_{ϵ} . In general, the final result will and must depend on which limiting operation was specified. This is extremely counter-intuitive at first hearing; yet it becomes obvious when the reason for it is understood."

- E.T. Jaynes (paraphrased)

Solution: don't condition on measure zero events

Problem: conditioning on events of measure zero is ambiguous. **Solution:** condition on intervals.

```
observe(D, Interval(x,w))
```

Meaning: rand(D) is in an interval of width w around x.

Solution: don't condition on measure zero events

Problem: conditioning on events of measure zero is ambiguous. **Solution:** condition on intervals.

```
observe(D, Interval(x,w))
```

Meaning: rand(D) is in an interval of width w around x.

```
Rejection sampling:
function observe(D,I){
   if(abs(rand(D) - I.midpoint) > I.width/2){ weight = 0 }
}
```

Solution: don't condition on measure zero events

Problem: conditioning on events of measure zero is ambiguous. **Solution:** condition on intervals.

```
observe(D, Interval(x,w))
```

Meaning: rand(D) is in an interval of width w around x.

```
Rejection sampling:
```

```
function observe(D,I){
   if(abs(rand(D) - I.midpoint) > I.width/2){ weight = 0 }
}
```

Importance sampling:

function observe(D,I){ weight *= probability(D,I) }
For intervals, probability(D,I) is nonzero.

Example of conditioning on intervals **Example:**

```
function centimeters(){
 h = rand(Normal(170, 50))
  if(flip(0.5)){
    observe(Normal(180, 10), Interval(h, 10))
  }
}
function meters(){
 h = rand(Normal(1.7, 0.5))
  if(flip(0.5)){
    observe(Normal(1.8, 0.1), Interval(h, 0.1))
  }
3
```

Example of conditioning on intervals **Example:**

```
function centimeters(){
 h = rand(Normal(170, 50))
  if(flip(0.5)){
    observe(Normal(180, 10), Interval(h, 10))
  }
}
function meters(){
 h = rand(Normal(1.7, 0.5))
  if(flip(0.5)){
    observe(Normal(1.8, 0.1), Interval(h, 0.1))
  }
}
```

Same output & no unit errors, even though observe is conditionally executed!

Example of conditioning on intervals **Example:**

```
function centimeters(){
 h = rand(Normal(170, 50))
  if(flip(0.5)){
    observe(Normal(180, 10), Interval(h, 10))
  }
}
function meters(){
 h = rand(Normal(1.7, 0.5))
  if(flip(0.5)){
    observe(Normal(1.8, 0.1), Interval(h, 0.1))
  }
}
```

Same output & no unit errors, even though observe is conditionally executed! Rejection sampling and importance sampling converge to the same answer!

We still want to condition on measure zero events

We still want to condition on measure zero events

Idea: parameterize the program by the width of the interval, and take the limit width ightarrow 0

We still want to condition on measure zero events

Idea: parameterize the program by the width of the interval, and take the limit width ightarrow 0

```
function drunk(width){
    h = rand(Normal(1.7, 0.5))
    w = rand(Normal(60, 10))
    if(flip(0.5)){
        observe(Normal(1.8, 0.1), Interval(h, A*width))
    }else{
        observe(Normal(70, 10), Interval(w, B*width))
    }
}
```

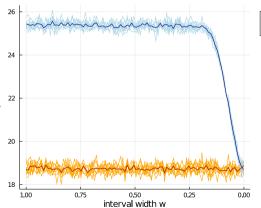
Since *width* is unitless, we must introduce constants A and B with units m and kg. The relative size matters even as *width* $\rightarrow 0$!

We still want to condition on measure zero events

Idea: parameterize the program by the width of the interval, and take the limit width ightarrow 0

```
function drunk(width){
    h = rand(Normal(1.7, 0.5))
    w = rand(Normal(60, 10))
    if(flip(0.5)){
        observe(Normal(1.8, 0.1), Int
    }else{
        observe(Normal(70, 10), Inter
    }
}
```

Since *width* is unitless, we must introduce constants A and B with units m and kg. The relative size matters even as *width* $\rightarrow 0$!



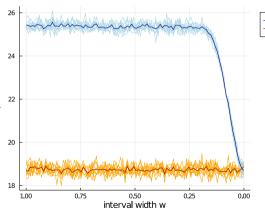
We still want to condition on measure zero events

Idea: parameterize the program by the width of the interval, and take the limit width ightarrow 0

```
function drunk(width){
    h = rand(Normal(1.7, 0.5))
    w = rand(Normal(60, 10))
    if(flip(0.5)){
        observe(Normal(1.8, 0.1), Int
    }else{
        observe(Normal(70, 10), Inter
    }
}
```

Since *width* is unitless, we must introduce constants A and B with units m and kg. The relative size matters even as *width* $\rightarrow 0$!

Can we compute the limit $w \rightarrow 0$ directly?



Infinitesimal numbers

Definition

An infinitesimal number is a pair $(r, n) \in \mathbb{R} \times \mathbb{Z}$, which we write as $r\epsilon^n$.

Infinitesimal numbers

Definition

An infinitesimal number is a pair $(r, n) \in \mathbb{R} \times \mathbb{Z}$, which we write as $r\epsilon^n$. Arithmetic with infinitesimals:

$$r\epsilon^{n} \pm s\epsilon^{k} = \begin{cases} (r \pm s)\epsilon^{n} & \text{if } n = k \\ r\epsilon^{n} & \text{if } n < k \\ \pm s\epsilon^{k} & \text{if } n > k \end{cases}$$
$$(r\epsilon^{n}) \cdot (s\epsilon^{k}) = (r \cdot s)\epsilon^{n+k}$$
$$(r\epsilon^{n})/(s\epsilon^{k}) = \begin{cases} (r/s)\epsilon^{n-k} & \text{if } s \neq 0 \\ \text{undefined} & \text{if } s = 0 \end{cases}$$

The probability that rand(D) lies in the interval $[x - r\epsilon^n, x + r\epsilon^n]$:

probability(D, Interval(x,
$$r\epsilon^n$$
)) =

$$\begin{cases}
cdf(D, x + \frac{1}{2}r) - cdf(D, x - \frac{1}{2}r) & \text{if } n = 0 \\
pdf(D, x) \cdot r\epsilon^n & \text{if } n > 0
\end{cases}$$

The probability that rand(D) lies in the interval $[x - r\epsilon^n, x + r\epsilon^n]$:

probability(D, Interval(x,
$$re^n$$
)) =

$$\begin{cases}
cdf(D, x + \frac{1}{2}r) - cdf(D, x - \frac{1}{2}r) & \text{if } n = 0 \\
pdf(D, x) \cdot re^n & \text{if } n > 0
\end{cases}$$

Infinitesimals unify cdf and pdf!

Correctness properties

Consistency with existing probabilistic programming languages:

observe(D,Interval(x,eps)) gives the same result as observe(D,x) outside conditionals

Correctness properties

Consistency with existing probabilistic programming languages:

observe(D,Interval(x,eps)) gives the same result as observe(D,x) outside conditionals

Consistency with non-zero width intervals:

observe(D,Interval(x,eps)) gives the same result as observe(D,Interval(x,width)) and then taking the limit width $\rightarrow 0$

Theorem

If f(x) is given by a "probability expression" and $f(\epsilon) = r\epsilon^n$, then $\lim_{x\to 0} \frac{f(x)}{x^n} = r$.

Correctness properties

Consistency with existing probabilistic programming languages:

observe(D,Interval(x,eps)) gives the same result as observe(D,x) outside conditionals

Consistency with non-zero width intervals:

observe(D,Interval(x,eps)) gives the same result as observe(D,Interval(x,width)) and then taking the limit width $\rightarrow 0$

Theorem

If f(x) is given by a "probability expression" and $f(\epsilon) = r\epsilon^n$, then $\lim_{x\to 0} \frac{f(x)}{x^n} = r$.

Definition

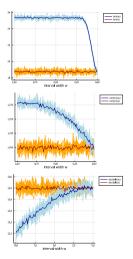
We say that f(x) is a "probability expression" in the variable x if f(x) is defined using the operations $+, -, \cdot, /$, constants, and probability(D, Interval(s, rx)) where $r, s \in \mathbb{R}$ are constants, and D is a probability distribution with differentiable cdf.

Importance sampling computes a probability expression.

Infinitesimal numbers

Example programs:

```
function bmi(width){
 h = rand(Normal(1.70, 0.2))
 w = rand(Normal(70, 30))
  if (flip (0.5)) {
      observe(Normal(2.0,0.1), Interval(h,10*width))
  }else{
      observe(Normal(90.5), Interval(w,width))
  return w / h^2
function meters(width){
 h = rand(Normal(1.7, 0.5))
  if (flip (0.5)) {
      observe(Normal(2.0.0.1), Interval(h,width))
  return h
function decibels(width){
 x = rand(Normal(10.5))
  observe(Normal(15.5).Interval(x.width))
  return v
```



Theorem works: we can condition on events of measure zero without paradoxes

The factor in front of ϵ allows us to do parameter transformations correctly:

A function f maps $Interval(x, \epsilon)$ to $Interval(f(x), f'(x)\epsilon)$.

The factor in front of ϵ allows us to do parameter transformations correctly:

A function f maps $Interval(x, \epsilon)$ to $Interval(f(x), f'(x)\epsilon)$.

Original program:

Answer: 1.75

The factor in front of ϵ allows us to do parameter transformations correctly:

A function f maps $Interval(x, \epsilon)$ to $Interval(f(x), f'(x)\epsilon)$.

Original program:

Answer: 1.75

```
Logarithmic ruler program:
```

Answer: 1.75

$\textbf{Same output} \implies \text{parameter transformation correctly applied}$

Language support for parameter transformations $f : \mathbb{R} \to \mathbb{R}$.

- Define f(D) for distributions by defining rand, pdf, cdf of f(D)
- Define f(I) for finite width intervals and infinitesimal width intervals Requires that f is monotone and differentiable.

Original program:

```
observe(Normal(1.8,0.5),
Interval(h,eps))
```

Answer: 1.75

Language support for parameter transformations $f : \mathbb{R} \to \mathbb{R}$.

- Define f(D) for distributions by defining rand, pdf, cdf of f(D)
- Define f(I) for finite width intervals and infinitesimal width intervals Requires that f is monotone and differentiable.

Original program:

```
observe(Normal(1.8,0.5),
Interval(h,eps))
```

Answer: 1.75

Logarithmic ruler program:

```
Answer: 1.75
```

Language support for parameter transformations $f : \mathbb{R} \to \mathbb{R}$.

- Define f(D) for distributions by defining rand, pdf, cdf of f(D)
- Define f(I) for finite width intervals and infinitesimal width intervals Requires that f is monotone and differentiable.

Original program:

```
Logarithmic ruler program:
```

```
observe(Normal(1.8,0.5),
Interval(h,eps))
```

Answer: 1.75

```
Answer: 1.75
```

```
In general: observe(f(D), f(I)) = observe(D, I)
```

 \implies programs are invariant under parameter transformations

Recap

- > Paradoxical behaviour: seemingly equivalent probabilistic programs give different outputs
- Root of the problem: conditioning on measure-zero events is ambiguous
- Solution: condition on intervals
- Restores rejection sampling as ground truth semantics
- Model measure-zero events as a limit, computed using infinitesimal arithmetic
- Semantics of observe(D, Interval(x, eps)) agrees with the old observe(D, x) in most cases
- Programs are now invariant under parameter transformations
- Implementation in Julia

Comments or questions?

julesjacobs@gmail.com

These slides: julesjacobs.com/slides/measurezero.pdf

Acknowledgements I thank Sriram Sankaranarayanan and the anonymous POPL reviewers for their outstanding feedback. I'm grateful to Ike Mulder, Arjen Rouvoet, Paolo Giarrusso, Dongho Lee, Ahmad Salim Al-Sibahi, Sam Staton, Christian Weilbach, and Robbert Krebbers for help, inspiration, and discussions.