Higher-Order Leak and Deadlock Free Locks (POPL'23)

 $Jules \ Jacobs$ Radboud University \rightarrow Cornell University

Stephanie Balzer

Carnegie Mellon University

1

Memory management with substructural types

```
fn min(x: u32, y: u32) → u32 {
  let mut v = Vec::new();
  v.push(x);
  v.push(y);
  v.sort();
  return v[0];
  // v is deallocated
}
```

- Each heap allocation has a single owning reference
- Deallocated when owning reference disappears
- Prevents memory leaks...?

Memory leaks in Rust

Arc<Mutex<T>>

- Shareable mutable reference to T
 - Guarded by a lock
 - Reference-counted
- Can store mutexes in mutexes

```
enum List { Nil, Cons(u32, Arc<Mutex<List>>) }
```

Memory leaks in Rust

Arc<Mutex<T>>>

- Shareable mutable reference to T
 - Guarded by a lock
 - Reference-counted
- Can store mutexes in mutexes

```
enum List { Nil, Cons(u32, Arc<Mutex<List>>) }
```

Memory leaks!

```
let x = Arc::new(Mutex::new(Nil)); // create list
```

```
*x.lock() = Cons(1, x.clone()); // create cycle
```

```
// refcount=2
drop(x);
// refcount=1 → list is leaked
```

Deadlocks in Rust

```
fn swap(x: &Mutex<u32>, y: &Mutex<u32>){
  let mut gx = x.lock(); // acquire locks
  let mut gy = y.lock();
```

```
let tmp = *gx; // swap contents
*gx = *gy;
*gy = tmp;
```

```
drop(gx); // release locks
drop(gy);
}
```

Deadlocks!

```
let x = Mutex::new(1);
let y = Mutex::new(2);
fork{ swap(&x, &y); }
fork{ swap(&y, &x); }
```

Can we guarantee leak and deadlock freedom by type checking?

Yes, we can!

Language λ_{lock} with a linearly typed lock API

- ▶ No leaks/deadlocks (✓ in Coq)
- Any lock in scope can be safely acquired fn swap(x: &Mutex<u32>, y: &Mutex<u32>) √
- Can store locks in locks (recursively)
 enum List{Nil,Cons(u32, Arc<Mutex<List>>)} √
- Key invariant: acyclic sharing topology

Yes, we can!

Language λ_{lock} with a linearly typed lock API

- ▶ No leaks/deadlocks (✓ in Coq)
- Any lock in scope can be safely acquired fn swap(x: &Mutex<u32>, y: &Mutex<u32>) √
- Can store locks in locks (recursively)
 enum List{Nil,Cons(u32, Arc<Mutex<List>>)} √
- Key invariant: acyclic sharing topology

Extension λ_{lock++} with cyclic sharing topology

- ▶ No leaks/deadlocks (✓ in Coq)
- $\blacktriangleright\,$ Cycles within lock groups allowed via local lock orders $\checkmark\,$
- $\lambda_{lock} \equiv$ all lock groups are singletons

 λ_{lock} 's lock type

A shareable reference to τ, similar to Arc<Mutex<t>> in Rust, but *linearly typed*

$$\operatorname{Lock} \langle \tau_b^a \rangle \qquad \begin{array}{l} a \in \{0,1\} \\ b \in \{0,1\} \end{array}$$

a = 1: this reference has to deallocate the lock
b = 1: this reference has to release the lock

 λ_{lock} 's lock type

A shareable reference to τ, similar to Arc<Mutex<t>> in Rust, but *linearly typed*

$$\langle \tau^a_b \rangle \qquad \begin{array}{l} a \in \{0,1\} \\ b \in \{0,1\} \end{array}$$

a = 1: this reference has to deallocate the lock
b = 1: this reference has to release the lock

$\lambda_{lock}\text{'s lock API}$

 $\textbf{new}:~\textbf{1} \multimap \langle \tau \, {}^1_1 \rangle$

λ_{lock} 's lock API

 $\textbf{new}: \ \textbf{1} \multimap \big< \tau_1^1 \big>$

 λ_{lock} 's lock API

new : $1 - \langle \tau_1^1 \rangle$

$$\textbf{fork}: \ \langle \tau^{a_1+a_2}_{b_1+b_2} \rangle \times (\langle \tau^{a_2}_{b_2} \rangle \multimap \mathbf{1}) \multimap \langle \tau^{a_1}_{b_1} \rangle$$

$$\mathsf{fork}: \ \langle \tau^{a_1+a_2}_{b_1+b_2} \rangle \times (\langle \tau^{a_2}_{b_2} \rangle \multimap \mathbf{1}) \multimap \langle \tau^{a_1}_{b_1} \rangle$$

$$\mathbf{fork}: \ \langle \tau^{a_1+a_2}_{b_1+b_2} \rangle \times (\langle \tau^{a_2}_{b_2} \rangle \multimap \mathbf{1}) \multimap \langle \tau^{a_1}_{b_1} \rangle$$

fork:
$$\langle \tau_{b_1+b_2}^{a_1+a_2} \rangle \times (\langle \tau_{b_2}^{a_2} \rangle \multimap \mathbf{1}) \multimap \langle \tau_{b_1}^{a_1} \rangle$$

release :
$$\langle \tau_1^a \rangle \times \tau \multimap \langle \tau_0^a \rangle$$

acquire :
$$\langle \tau_0^a \rangle - \langle \tau_1^a \rangle \times \tau$$

new :
$$\mathbf{1} - \langle \tau_1^1 \rangle$$

fork:
$$\langle \tau_{b_1+b_2}^{a_1+a_2} \rangle \times (\langle \tau_{b_2}^{a_2} \rangle \multimap \mathbf{1}) \multimap \langle \tau_{b_1}^{a_1} \rangle$$

release:
$$\langle \tau_1^a \rangle \times \tau \multimap \langle \tau_0^a \rangle$$

acquire :
$$\langle \tau_0^a \rangle \multimap \langle \tau_1^a \rangle \times \tau$$

fork:
$$\langle \tau_{b_1+b_2}^{a_1+a_2} \rangle \times (\langle \tau_{b_2}^{a_2} \rangle \multimap \mathbf{1}) \multimap \langle \tau_{b_1}^{a_1} \rangle$$

$$\textbf{release}: \ \langle \tau_1^a \rangle \times \tau \multimap \langle \tau_0^a \rangle$$

acquire :
$$\langle \tau_0^a \rangle \multimap \langle \tau_1^a \rangle \times \tau$$

new :
$$\mathbf{1} - \langle \tau_1^1 \rangle$$

fork:
$$\langle \tau_{b_1+b_2}^{a_1+a_2} \rangle \times (\langle \tau_{b_2}^{a_2} \rangle \multimap \mathbf{1}) \multimap \langle \tau_{b_1}^{a_1} \rangle$$

release:
$$\langle \tau_1^a \rangle \times \tau \multimap \langle \tau_0^a \rangle$$

acquire :
$$\langle \tau_0^a \rangle \multimap \langle \tau_1^a \rangle \times \tau$$

fork:
$$\langle \tau_{b_1+b_2}^{a_1+a_2} \rangle \times (\langle \tau_{b_2}^{a_2} \rangle \multimap \mathbf{1}) \multimap \langle \tau_{b_1}^{a_1} \rangle$$

$$\textbf{release}: \ \langle \tau_1^a \rangle \times \tau \multimap \langle \tau_0^a \rangle$$

acquire :
$$\langle \tau_0^a \rangle \multimap \langle \tau_1^a \rangle \times \tau$$

new :
$$\mathbf{1} - \langle \tau_1^1 \rangle$$

fork :
$$\langle \tau_{b_1+b_2}^{a_1+a_2} \rangle \times (\langle \tau_{b_2}^{a_2} \rangle - 0 \mathbf{1}) - 0 \langle \tau_{b_1}^{a_1} \rangle$$

release:
$$\langle \tau_1^a \rangle \times \tau \multimap \langle \tau_0^a \rangle$$

acquire :
$$\langle \tau_0^a \rangle \multimap \langle \tau_1^a \rangle \times \tau$$

drop :
$$\langle \tau_0^0 \rangle - 0$$
 1

wait :
$$\langle \tau_0^1 \rangle \multimap \tau$$

new :
$$\mathbf{1} - \langle \tau_1^1 \rangle$$

$$\textbf{fork}: \ \langle \tau^{a_1+a_2}_{b_1+b_2} \rangle \times (\langle \tau^{a_2}_{b_2} \rangle \multimap \mathbf{1}) \multimap \langle \tau^{a_1}_{b_1} \rangle$$

release:
$$\langle \tau_1^a \rangle \times \tau \multimap \langle \tau_0^a \rangle$$

acquire :
$$\langle \tau_0^a \rangle \multimap \langle \tau_1^a \rangle \times \tau$$

drop :
$$\langle \tau_0^0 \rangle - 0$$
 1

wait :
$$\langle \tau_0^1 \rangle \multimap \tau$$

new : $\mathbf{1} - \langle \tau_1^1 \rangle$ **fork**: $\langle \tau_{b_1+b_2}^{a_1+a_2} \rangle \times (\langle \tau_{b_2}^{a_2} \rangle - 0 \mathbf{1}) - 0 \langle \tau_{b_1}^{a_1} \rangle$ release : $\langle \tau_1^a \rangle \times \tau - \circ \langle \tau_0^a \rangle$ acquire : $\langle \tau_0^a \rangle - \circ \langle \tau_1^a \rangle \times \tau$ drop : $\langle \tau_0^0 \rangle \rightarrow 1$ wait : $\langle \tau_0^1 \rangle \rightarrow \tau$

 $\lambda_{lock}\text{'s lock API}$

$$\begin{array}{l} \text{new}: \ \mathbf{1} \multimap \langle \tau_1^1 \rangle \\ \\ \text{fork}: \ \langle \tau_{b_1+b_2}^{a_1+a_2} \rangle \times (\langle \tau_{b_2}^{a_2} \rangle \multimap \mathbf{1}) \multimap \langle \tau_{b_1}^{a_1} \rangle \\ \\ \text{release}: \ \langle \tau_1^a \rangle \times \tau \multimap \langle \tau_0^a \rangle \\ \\ \text{acquire}: \ \langle \tau_0^a \rangle \multimap \langle \tau_1^a \rangle \times \tau \\ \\ \\ \text{drop}: \ \langle \tau_0^0 \rangle \multimap \mathbf{1} \\ \\ \\ \text{wait}: \ \langle \tau_0^1 \rangle \multimap \tau \end{array}$$

Which concurrency patterns does λ_{lock} support?

Simultaneous acquisition of any locks in scope

```
let swap = \lambda(\ell_1 : \langle \tau_0^{\alpha} \rangle, \ell_2 : \langle \tau_0^{\alpha'} \rangle).

let (\ell_1 : \langle \tau_1^{\alpha} \rangle, x_1 : \tau) = acquire(\ell_1) in

let (\ell_2 : \langle \tau_1^{\alpha'} \rangle, x_2 : \tau) = acquire(\ell_2) in

let \ell_1 : \langle \tau_0^{\alpha} \rangle = release(\ell_1, x_2) in

let \ell_2 : \langle \tau_0^{\alpha'} \rangle = release(\ell_2, x_1) in

(\ell_1, \ell_2)
```


Simultaneous acquisition of any locks in scope

$$\begin{array}{l} \text{let swap} \ = \ \lambda(\ell_1 : \langle \tau_0^{\,\alpha} \rangle, \ell_2 : \langle \tau_0^{\,\alpha'} \rangle).\\ \text{let} \ (\ell_1 : \langle \tau_1^{\,\alpha} \rangle, x_1 : \tau) \ = \ \text{acquire}(\ell_1) \ \text{in}\\ \text{let} \ (\ell_2 : \langle \tau_1^{\,\alpha'} \rangle, x_2 : \tau) \ = \ \text{acquire}(\ell_2) \ \text{in}\\ \text{let} \ \ell_1 : \langle \tau_0^{\,\alpha} \rangle \ = \ \text{release}(\ell_1, x_2) \ \text{in}\\ \text{let} \ \ell_2 : \langle \tau_0^{\,\alpha'} \rangle \ = \ \text{release}(\ell_2, x_1) \ \text{in}\\ (\ell_1, \ell_2) \end{array}$$

Deadlocks?

- let x = release(new(), 1) in
- let y = release(new(), 2) in

let $x = \text{fork}(x, \lambda x. \text{swap}(x, y) \cdots)$ in

Variable *y* not in scope here!

Simultaneous acquisition of any locks in scope

$$\begin{array}{l} \text{let swap} \ = \ \lambda(\ell_1 : \langle \tau_0^{\,\alpha} \rangle, \ell_2 : \langle \tau_0^{\,\alpha'} \rangle).\\ \text{let} \ (\ell_1 : \langle \tau_1^{\,\alpha} \rangle, x_1 : \tau) \ = \ \text{acquire}(\ell_1) \ \text{in}\\ \text{let} \ (\ell_2 : \langle \tau_1^{\,\alpha'} \rangle, x_2 : \tau) \ = \ \text{acquire}(\ell_2) \ \text{in}\\ \text{let} \ \ell_1 : \langle \tau_0^{\,\alpha} \rangle \ = \ \text{release}(\ell_1, x_2) \ \text{in}\\ \text{let} \ \ell_2 : \langle \tau_0^{\,\alpha'} \rangle \ = \ \text{release}(\ell_2, x_1) \ \text{in}\\ (\ell_1, \ell_2) \end{array}$$

Deadlocks?

let x = (...) in let $y_1, y_2, y_3, y_4, y_5, y_6 = (...)$ in let x =fork $(x, \lambda x. foo(x, y_4, y_5, y_6))$ in bar (x, y_1, y_2, y_3)

$\mathbf{release}(\ell_1:\langle\langle \tau_b^a\rangle_1^0\rangle,\ell_2:\langle \tau_b^a\rangle)$

Another thread can **acquire**(ℓ_1) to obtain ℓ_2

Futures / promises / fork-join

$$\begin{array}{l} \text{let } \ell : \langle \tau_0^1 \rangle \ = \ \text{fork}(\text{new}() : \langle \tau_1^1 \rangle, \lambda \ell : \langle \tau_1^0 \rangle. \\ \text{drop}(\text{release}(\ell, E : \tau)) \end{array}$$
$$) \text{ in } \cdots \text{wait}(\ell) \cdots$$

Obligation to fulfill promise cannot be discarded

Other concurrency patterns

Recursive shared mutable data structures

tree = $\langle \mathbf{1} + \tau \times \text{tree} \times \text{tree} \ \frac{1}{0} \rangle$

Other concurrency patterns

Recursive shared mutable data structures

tree = $\langle \mathbf{1} + \tau \times \text{tree} \times \text{tree} \ \frac{1}{0} \rangle$

Message passing as a library

With *session types* encoded as λ_{lock} types:

 $s ::= !\tau.s | ?\tau.s | s \& s | s \oplus s | End_! | End_? | \mu x.s | x$

Shared & client-server sessions:

 $\langle \mu x.!\tau.?\tau.s \oplus \mathsf{End}_{!0}^{0} \rangle$

Deadlock and Leak Freedom Theorem

Program semantics

 $T_{1} \triangleq [\text{let } x = \text{new}() \text{ in } (\cdots)]$ $\underbrace{\{T_{1}\}}_{\rho_{1}} \rightsquigarrow \underbrace{\{T_{1}', L_{1}\}}_{\rho_{2}} \rightsquigarrow \cdots \rightsquigarrow \underbrace{\{T_{1}, T_{2}, \dots, L_{1}, L_{2}, \dots\}}_{\rho_{n}}$

Program semantics

 $T_{1} \triangleq [\text{let } x = \text{new}() \text{ in } (\cdots)]$ $\underbrace{\{T_{1}\}}_{\rho_{1}} \rightsquigarrow \underbrace{\{T_{1}', L_{1}\}}_{\rho_{2}} \rightsquigarrow \cdots \rightsquigarrow \underbrace{\{T_{1}, T_{2}, \dots, L_{1}, L_{2}, \dots\}}_{\rho_{n}} \stackrel{?}{\rightsquigarrow} \rho_{n+1}$

$\frac{\text{Program semantics}}{T_{1} \triangleq [\text{let } x = \text{new}() \text{ in } (\cdots)]}$ $\underbrace{\{T_{1}\}}_{\rho_{1}} \rightsquigarrow \underbrace{\{T'_{1}, L_{1}\}}_{\rho_{2}} \rightsquigarrow \cdots \rightsquigarrow \underbrace{\{T_{1}, T_{2}, \dots, L_{1}, L_{2}, \dots\}}_{\rho_{n}} \stackrel{?}{\rightsquigarrow} \rho_{n+1}$ Global progress

If ρ_1 type-checks and $\rho_1 \rightsquigarrow^* \rho_n \neq \emptyset$, then $\exists \rho_{n+1}, \rho_n \rightsquigarrow \rho_{n+1}$ No <u>total</u> deadlocks, leaked memory, run-time type errors, use-after-free, etc.

 $\frac{\text{Program semantics}}{T_{1} \triangleq [\text{let } x = \text{new}() \text{ in } (\cdots)]}$ $\underbrace{\{T_{1}\}}_{\rho_{1}} \rightsquigarrow \underbrace{\{T'_{1}, L_{1}\}}_{\rho_{2}} \rightsquigarrow \cdots \rightsquigarrow \underbrace{\{T_{1}, T_{2}, \dots, L_{1}, L_{2}, \dots\}}_{\rho_{n}} \stackrel{?}{\rightsquigarrow} \rho_{n+1}$ Global progress

If ρ_1 type-checks and $\rho_1 \rightarrow^* \rho_n \neq \emptyset$, then $\exists \rho_{n+1} \cdot \rho_n \rightarrow \rho_{n+1}$ No total deadlocks, leaked memory, run-time type errors, use-after-free, etc. $\sqrt{in \operatorname{Coq}} \ (\approx 13k \operatorname{loc})$

Strong deadlock and leak freedom theorem (\checkmark in Coq)

 $T \in \rho$ waits for $L \in \rho$ if thread T is blocked on lock L. $L \in \rho$ waits for $T \in \rho$ if thread T references lock L but is not blocked on L. $L \in \rho$ waits for $L' \in \rho$ if lock L' references lock L.

Strong deadlock and leak freedom theorem (\checkmark in Coq)

 $T \in \rho$ waits for $L \in \rho$ if thread T is blocked on lock L. $L \in \rho$ waits for $T \in \rho$ if thread T references lock L but is not blocked on L. $L \in \rho$ waits for $L' \in \rho$ if lock L' references lock L.

 $X \in \rho$ is *reachable* if X transitively <u>waits for</u> $T \in \rho$ that can progress

 $S \subseteq \rho$ is a *deadlock* if no $T \in S$ can step and no $X \in S$ waits for $Y \in \rho \setminus S$

Strong deadlock and leak freedom theorem (\checkmark in Coq)

 $T \in \rho$ waits for $L \in \rho$ if thread T is blocked on lock L. $L \in \rho$ waits for $T \in \rho$ if thread T references lock L but is not blocked on L. $L \in \rho$ waits for $L' \in \rho$ if lock L' references lock L.

 $X \in \rho$ is *reachable* if X transitively <u>waits for</u> $T \in \rho$ that can progress

 $S \subseteq \rho$ is a *deadlock* if no $T \in S$ can step and no $X \in S$ waits for $Y \in \rho \setminus S$

Theorem: all $X \in \rho$ reachable \iff no deadlocks $\emptyset \subset S \subseteq \rho$ **Theorem:** ρ_1 type checked \implies all $X \in \rho_n$ reachable **Corollary:** ρ_1 type checked \implies no deadlocks $\emptyset \subset S \subseteq \rho_n$ **Corollary:** $\rho_n \neq \emptyset \rightarrow \exists \rho_{n+1}, \ \rho_n \rightsquigarrow \rho_{n+1}$

Insight: deadlock and leak freedom are related

Goal: Find a thread in $\rho_n \neq \emptyset$ that can progress Fact 1: ρ_1 type-checks \implies every $X \in \rho_n$ can either progress, or waits for some Y

Goal: Find a thread in $\rho_n \neq \emptyset$ that can progress **Fact 1:** ρ_1 type-checks \implies **every** $X \in \rho_n$ **can either progress, or** <u>waits for</u> **some** Y**Therefore:** Start at any $X \in \rho_n$, and keep following <u>waits for</u> edges

Goal: Find a thread in $\rho_n \neq \emptyset$ that can progress

Fact 1: ρ_1 type-checks \implies every $X \in \rho_n$ can either progress, or <u>waits for</u> some Y

Therefore: Start at any $X \in \rho_n$, and keep following <u>waits for</u> edges

What if we loop in a cycle? deadlock/leak

Goal: Find a thread in $\rho_n \neq \emptyset$ that can progress

Fact 1: ρ_1 type-checks \implies every $X \in \rho_n$ can either progress, or <u>waits for</u> some Y

Therefore: Start at any $X \in \rho_n$, and keep following <u>waits for</u> edges

What if we loop in a cycle? deadlock/leak

Fact 2: ρ_1 type checks \implies run-time graph ρ_n of threads & locks remains acyclic

Goal: Find a thread in $\rho_n \neq \emptyset$ that can progress

Fact 1: ρ_1 type-checks \implies every $X \in \rho_n$ can either progress, or <u>waits for</u> some Y

Therefore: Start at any $X \in \rho_n$, and keep following <u>waits for</u> edges

What if we loop in a cycle? deadlock/leak

Fact 2: ρ_1 type checks \implies run-time graph ρ_n of threads & locks remains acyclic

Problem: Proving Fact 1 & 2 formally (in Coq) is hard and tedious

Separation logic for acyclicity

Connectivity Graphs: A Method for Proving Deadlock Freedom Based on Separation Logic Jules Jacobs, Stephanie Balzer, Robbert Krebbers, in POPL'22 Motto: Do proofs in separation logic, get acyclicity for free Key insight: Separation logic proof rules correspond to acyclicity-preserving graph transformations! Motto: Do proofs in separation logic, get acyclicity for free Key insight: Separation logic proof rules correspond to acyclicity-preserving graph transformations!

- 1. Instantiate Iris proof mode with a linear separation logic
- 2. Do all type preservation inside that separation logic:

Coq	\rightarrow	Iris
Prop	\rightarrow	iProp
$P \wedge Q$	\rightarrow	P * Q
intros	\rightarrow	iIntros
destruct	\rightarrow	iDestruct
split	\rightarrow	iSplit

3. Get acyclicity for free!*

Beyond acyclicity: λ_{lock++}

Beyond acyclicity Unifying two worlds of session types

Multiparty GV: Functional Multiparty Session Types With Certified Deadlock Freedom Jules Jacobs, Stephanie Balzer, Robbert Krebbers, in ICFP'22

GV family languages Gay, Vasconcelos '10, Wadler '12

Binary session types

MPST family languages Honda '08

Multiparty session types

GV family languages Gay, Vasconcelos '10, Wadler '12

- Binary session types
- Deadlock-freedom by duality & linear typing

- Multiparty session types
- Deadlock-freedom by global consistency check

GV family languages Gay, Vasconcelos '10, Wadler '12

Binary session types

- Deadlock-freedom by duality & linear typing
- Dynamic spawning

- Multiparty session types
- Deadlock-freedom by global consistency check
- One static session

GV family languages

Gay, Vasconcelos '10, Wadler '12

- Binary session types
- Deadlock-freedom by duality & linear typing
- Dynamic spawning
- Channels first class values

- Multiparty session types
- Deadlock-freedom by global consistency check
- One static session
- Channels second class

GV family languages

Gay, Vasconcelos '10, Wadler '12

- Binary session types
- Deadlock-freedom by duality & linear typing
- Dynamic spawning
- Channels first class values
- Functional programming

- Multiparty session types
- Deadlock-freedom by global consistency check
- One static session
- Channels second class
- Pi-calculus variants

GV family languages

Gay, Vasconcelos '10, Wadler '12

- Binary session types
- Deadlock-freedom by duality & linear typing
- Dynamic spawning
- Channels first class values
- Functional programming

- Multiparty session types
- Deadlock-freedom by global consistency check
- One static session
- Channels second class
- Pi-calculus variants

MPGV allows local cycles

Can we allow that in λ_{lock} *?*

In λ_{lock} , we can duplicate *one* lock on **fork**. Is it sound to allow duplicating *two*?

 $\textbf{let}\;(\ell_1,\ell_2)\;=\;\textbf{fork}((\ell_1,\ell_2),\lambda(\ell_1,\ell_2).\;\cdots)\;\textbf{in}\;\cdots$

In λ_{lock} , we can duplicate *one* lock on **fork**. Is it sound to allow duplicating *two*?

let
$$(\ell_1, \ell_2) = \text{fork}((\ell_1, \ell_2), \lambda(\ell_1, \ell_2), \cdots)$$
 in \cdots

No, because

- ▶ Deadlock: acquiring $(l_1 \text{ then } l_2)$ in parallel with $(l_2 \text{ then } l_1)$
- Leak: storing $(\ell_1 \text{ into } \ell_2)$ in parallel with $(\ell_2 \text{ into } \ell_1)$

In λ_{lock} , we can duplicate *one* lock on **fork**. Is it sound to allow duplicating *two*?

let
$$(\ell_1, \ell_2) = \text{fork}((\ell_1, \ell_2), \lambda(\ell_1, \ell_2), \cdots)$$
 in \cdots

No, because

- ▶ Deadlock: acquiring $(l_1 \text{ then } l_2)$ in parallel with $(l_2 \text{ then } l_1)$
- Leak: storing $(\ell_1 \text{ into } \ell_2)$ in parallel with $(\ell_2 \text{ into } \ell_1)$

Yes, if

- We make acquire and wait follow a lock order (only for locks in the same lock group)
- We prevent storing locks inside each other (only for locks in the same lock group)

$\lambda_{lock+\!\!\!+}\text{'s lock group type}$

$$\langle \tau_{1b_1}^{a_1}, ..., \tau_{nb_n}^{a_n} \rangle$$

- We can only **acquire** and **wait** in the given order
- We can add and remove locks dynamically
- The type level list is a *local view* into a complete order.

newgroup : $1 - \langle \rangle$ dropgroup : $\langle \rangle - 1$

$$\begin{array}{ll} \mathsf{new}[k]: \langle A, B \rangle \multimap \langle A, \tau_1^1, B \rangle & (\text{where length}(A) = k) \\ \mathsf{drop}[k]: \langle A, \tau_0^0, B \rangle \multimap \langle A, B \rangle \\ \mathsf{release}[k]: \langle A, \tau_1^a, B \rangle \times \tau \multimap \langle A, \tau_0^a, B \rangle \\ \mathsf{acquire}[k]: \langle A, \tau_0^a, B_0 \rangle \multimap \langle A, \tau_1^a, B_0 \rangle \times \tau \\ \mathsf{wait}[k]: \langle A_0, \tau_0^1, B_0^1 \rangle \multimap \langle A_0, B_0^1 \rangle \times \tau \\ \mathsf{fork}: \langle A \rangle \times (\langle B \rangle \multimap 1) \multimap \langle C \rangle & (\text{where } A = B \oplus C \end{array}$$

Swap within a lock group

swap : $\langle int_0^0, int_0^0 \rangle \multimap \langle int_0^0, int_0^0 \rangle$ swap(ℓ) := let $\ell, x = acquire[0](\ell)$ in let $\ell, y = acquire[1](\ell)$ in let $\ell = release[0](\ell, y)$ in let $\ell = release[1](\ell, x)$ in ℓ

- Type system enforces an order *within* a group
- No restrictions between two groups (Partial lock orders don't allow this!)

Dijkstra's dining philosophers

Lock groups allow $\lambda_{\text{lock++}}$ to have cyclic connectivity

- Example: *Dijkstra's Dining Philosophers*
- Every thread (*Philosopher*) has access to 2 locks (*forks*): $\langle \text{fork}_{b}^{a}, \text{fork}_{b'}^{a'} \rangle$
- Can grow the dining table dynamically
- Only need types of size **3** for table of size *n*:

$$\langle \mathsf{fork}^a_b, \mathsf{fork}^{a'}_{b'} \rangle \to \langle \mathsf{fork}^a_b, \mathsf{fork}^{a'}_{b'}, \mathsf{fork}^{a''}_{b''} \rangle \to \langle \mathsf{fork}^a_b, \mathsf{fork}^{a''}_{b''} \rangle$$

Conclusion

Can a *practical* type system be deadlock and leak free?

Can a practical type system be deadlock and leak free?

I hope to have convinced you that:

- This might be possible & is worth trying
- ▶ Promising direction: single ownership \rightarrow sharing topology

Can a practical type system be deadlock and leak free?

I hope to have convinced you that:

- ► This might be possible & is worth trying
- ▶ Promising direction: single ownership \rightarrow sharing topology

Problems yet to be solved:

- ► Type system → program logic ("Deadlock Free Iris")
- Integration with Rust features (borrowing & unsafe)
- DAG-shaped mutable data structures / Rc<RefCell<T>>

"The authors didn't even have to hide a bunch of more complicated rules in an appendix."

– Reviewer A

Related work

- CLASS Rocha and Caires (ICFP'21, ESOP'23)
- Client-server sessions Qian, Kavvos, Birkedal (ICFP'21)
- Usages/obligations Kobayashi et al. (see paper)
- Priorities Padovani, Dharda et al. (see paper)
- Manifest sharing Balzer et al. (ICFP'17,ESOP'19)
- Session types (see paper)