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Probabilistic programming

Example:

I A scientist randomly selects a man and a woman and measures their height

I The woman’s height h ∼ Normal(1.7, 0.5) meters

I The man’s height h′ ∼ Normal(1.8, 0.5) meters

Question: What’s the expectation of h conditioned on h′ = h?

function meters (){

h = rand(Normal (1.7, 0.5))

observe(Normal (1.8, 0.5), h)

return h

}

samples = run(meters , 1000)

estimate = average(samples)

Answer: ≈ 1.75

function centimeters (){

h = rand(Normal (170, 50))

observe(Normal (180, 50), h)

return h

}

samples = run(centimeters , 1000)

estimate = average(samples)

Answer: ≈ 175
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Paradox

h = rand(Normal (1.7, 0.5))

w = rand(Normal (60, 10))

if(flip (0.5)){

observe(Normal (1.8, 0.5), h)

}else{

observe(Normal (70, 10), w)

}

return h

Answer: ≈ 1.75

h = rand(Normal (170, 50))

w = rand(Normal (60, 10))

if(flip (0.5)){

observe(Normal (180, 50), h)

}else{

observe(Normal (70, 10), w)

}

return h

Answer: ≈ 170

I The output depends on whether we use meters or centimeters

I Happens in implementations as well as in formal operational semantics

I Similar behaviour in programs without conditionals too (Borel-Komolgorov paradox)
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Problem:

I Probabilistic programs are not invariant under parameter transformations

I It’s not clear what observe really means

Key ideas:

1. Determine what observe should mean by looking at positive measure conditioning

2. Change the language: observe conditions on intervals instead of points:
observe(Normal(1.8, 0.5), Interval(h, 0.1))

3. Parameterize the program by eps:
function foo(eps){

... observe(Normal (1.8, 0.5), Interval(h, eps)) ...

}

4. Take the limit eps→ 0.

5. Use symbolic infinitesimal arithmetic to compute the limit.
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Paradox revisited
A = 2.3 // meters B = 42.6 // kilograms

function foo(eps){

h = rand(Normal (1.7, 0.5)) // meters

w = rand(Normal (60, 10)) // kilograms

if(flip (0.5)){

observe(Normal (1.8, 0.5), Interval(h,A*eps))

}else{

observe(Normal (70, 10), Interval(w,B*eps))

}

return h

}

I Assume rejection sampling as “gold standard” semantics (works because width > 0)
observe(D,Interval(x,w)) , reject if random(D) /∈ [x − w , x + w ]

I Try foo(0.1); foo(0.01); foo(0.001) for different values of A and B

I The relative size of A and B matters, even as eps→ 0

I Change of units of h and w requires corresponding change in interval width A and B
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Non-linear parameter transformations

I The problem is more general than units and conditionals

I The general issue is invariance under parameter transformations

I Changes of units = linear parameter transformations
produces paradoxes in combination with conditionals

I General case: non-linear parameter transformations (e.g. log-transform)
produces paradoxes even without conditionals (e.g. Borel-Komolgorov paradox)

I See paper “Paradoxes of probabilistic programming” for details
(https://julesjacobs.com/pdf/paradoxes.pdf)
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Implementation
I Semantics: rejection sampling

observe(D,I) , reject if random(D) /∈ I

I Implementation: likelihood weighting
observe(D,I) , { weight *= P(D,I) } where P(D,I) , P( random(D) ∈ I ).

I The interval I can depend on eps

to compute lim eps → 0 exactly, do arithmetic with Rε , {aεn | a ∈ R, n ∈ Z}
I Similar to automatic differentiation with dual numbers
I Dual numbers: a + bε where ε2 = 0
I Infinitesimal probabilities: aεn where 1 + ε = 1

Result:
I This observe is invariant under arbitrary parameter transformations:

observe(f(D), f(I)) ≡ observe(D, I)

I Programs have clear probabilistic meaning via rejection sampling
I Can still condition on measure zero events
I Implemented as a DSL in Julia
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Originally in the paper: Beyond intervals

We can let I in observe(D,I) be an arbitrary set
as long as we can compute P(D,I) , P( random(D) ∈ I )
e.g.

I Union of intervals

I Finite set (if D is discrete)

I Regular language (if D is a Markov chain)
I General I ⊆ Rn for which we can approximate P(D,I) (if D multivariate)

I e.g. ellipsoid Iε , {|A~x + b| ≤ ε | ~x ∈ Rn}
I We can compute P(D, Iε) for infinitesimal ε in terms of the PDF of D
I For finite ε > 0 we may need numerical integration
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Originally in the paper: Soft observations

Generalize further: use soft indicator function f : Ω→ [0, 1] instead of hard sets

I f (x) , probability of accepting x

I Semantics: observe(D,f) , reject if flip(f(random(D))) == false

I Implementation: observe(D,f) , { weight *= W(D,f) }

where W(D,f) ,
∫
f (x)dP(D)

I e.g if f is piecewise constant, and we have a CDF for D, then we can compute W (D, f )
I Such f specifies the rejection probability for each piecewise constant region

I Note: f is not a probability density function.
I Probability density functions integrate to 1
I Soft observation functions return a probability (possibly infinitesimal)
I The PDF of the normal distribution is not a soft indicator function, but sin(x)2 is
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Originally in the paper: Events

Generalize further: use observe(D) where D = Bernoulli(p)

I Semantics: observe(Bernoulli(p)) , reject if flip(p) == false

I Implementation: observe(Bernoulli(p)) , { weight *= p }

I We view Bernoulli(p) as a “random boolean” and we observe that the boolean is true

I Probability p is allowed to be infinitesimal

I Define within(D,I) , Bernoulli(P( random(D) ∈ I ))
I Recovers observe(D,I) as observe(within(D,I))

I Boolean operations on Bernoulli’s:

E1 = within(D1 ,I1)

E2 = within(D2 ,I2)

observe(or(E1 ,not(E2)))

I Rejection sampling semantics:

if(!( random(D1) in I1 || random(D2) notin I2)){ reject (); }
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Correctness of probabilistic programming

I Which correctness criterion do we want?

I Even if the implementation matches the semantics,
maybe the semantics still has surprising behaviour!

I My view here
I Rejection sampling as gold standard semantics
I Use explicit limits to express measure zero conditioning

I Correctness criterion:
I Optimized semantics (e.g. likelihood weighting + importance sampling)

is equivalent to rejection sampling for ε ∈ R>0

I Limit is computed correctly:
executing foo(ε) on symbolic ε gives the same result as limx→0 foo(x)

I Can we prove all this in e.g. Coq?

I Other correctness criteria?
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Comments or questions?
julesjacobs@gmail.com

These slides: julesjacobs.com/slides/veriprop2021.pdf
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