Mechanized Deadlock Freedom for Session Types

Robbert Krebbers ${ }^{1}$
Stephanie Balzer ${ }^{2}$

${ }^{1}$ Radboud University, The Netherlands
VEST'21
${ }^{2}$ Carnegie Mellon University, USA

Mechanization of binary session types

- State of the art: type safety
- Our goal: deadlock and leak freedom

Mechanization of binary session types

- State of the art: type safety
- Our goal: deadlock and leak freedom
- Cyclic waiting dependency \Longrightarrow deadlock
- Reasoning about waiting dependencies in a proof assistant is hard

Mechanization of binary session types

- State of the art: type safety
- Our goal: deadlock and leak freedom
- Cyclic waiting dependency \Longrightarrow deadlock
- Reasoning about waiting dependencies in a proof assistant is hard
- Our approach: connectivity graphs
- Keeps track of type environments and reference topology simultaneously

Mechanization of binary session types

- State of the art: type safety
- Our goal: deadlock and leak freedom
- Cyclic waiting dependency \Longrightarrow deadlock
- Reasoning about waiting dependencies in a proof assistant is hard
- Our approach: connectivity graphs
- Keeps track of type environments and reference topology simultaneously
- Develop tools for $\operatorname{Cgraph}(V, L)$ abstract in nodes V and edge labels L, that encapsulate the graph reasoning:

1. Well-formedness: link the Cgraph with the configuration using separation logic
2. Progress: waiting induction principle
3. Preservation: separation logic local graph transformations
```
Thread pool:
=>let c1 : !(?N.)?N. =
    fork (\lambda c1',
        let (c1',c) = recv(c1')
        let (c,n) = recv(c);
        let c1' = send(c1',n)
        close(c); close(c1'))
let c2 : ! N. =
    fork ( }\lambda\mathrm{ c2',
    let c1 = send(c1,c2');
    let (c1,m) = recv(c1))
    close(c1))
let c2 = send(c2,10);
close(c2)
```


Connectivity graph:

Thread pool:

\Rightarrow let c1 $=\# 1_{L}$
let c2 : ! N. =

$$
\text { fork (} \lambda \quad \mathrm{c} 2^{\prime} \text {, }
$$

$$
\text { let } c 1=\operatorname{send}\left(c 1, c 2^{\prime}\right) \text {; }
$$

$$
\text { let }(c 1, m)=\operatorname{recv}(c 1)
$$

close(c1))
let $c 2=$ send $(c 2,10)$; close (c2)
($\lambda \quad \mathrm{c} 1^{\prime}$,
$\operatorname{let}\left(c 1^{\prime}, c\right)=\operatorname{recv}\left(c 1^{\prime}\right)$
let (c,n) $=\operatorname{recv}(c)$;
let $c 1^{\prime}=\operatorname{send}\left(c 1^{\prime}, n\right)$ close(c); close(c1')) $\# 1_{R}$

Heap:

Connectivity graph:
$\# 1_{L} \mapsto[]$
$\# 1_{R} \mapsto[]$


```
    Thread pool:
    let c2 : ! N. =
    fork ( \(\lambda \mathrm{c} 2^{\prime}\),
        let \(c 1=\operatorname{send}\left(\# 1_{L}, c 2^{\prime}\right)\);
        let \((c 1, m)=\operatorname{recv}(c 1)\)
        close(c1))
    close (c2)
\(\Rightarrow\left(\lambda \quad c 1^{\prime}\right.\),
    \(\operatorname{let}\left(c 1^{\prime}, c\right)=\operatorname{recv}\left(c 1^{\prime}\right)\)
    let \((c, n)=\operatorname{recv}(c)\);
    let \(c 1^{\prime}=\operatorname{send}\left(c 1^{\prime}, n\right)\)
    close(c); close(c1')) \(\# 1_{R}\)
```


Thread pool:

let c2 : ! N. =
fork ($\lambda \mathrm{c} 2^{\prime}$,
let $c 1=\operatorname{send}\left(\# 1_{L}, c 2^{\prime}\right)$; let $(c 1, m)=\operatorname{recv}(c 1)$ close(c1))

```
    let c2 = send(c2,10);
```

```
    let c2 = send(c2,10);
```

$$
\Rightarrow\left(\lambda \quad c 1^{\prime},\right.
$$

$$
\text { let }\left(c 1^{\prime}, c\right)=\operatorname{recv}\left(c 1^{\prime}\right)
$$

$$
\text { let }(c, n)=\operatorname{recv}(c) \text {; }
$$

$$
\text { let } c 1^{\prime}=\operatorname{send}\left(c 1^{\prime}, n\right)
$$

$$
\text { close(c); close(c1')) } \# 1_{R}
$$

Heap:

Connectivity graph:
$\# 1_{L} \mapsto[]$
$\# 1_{R} \mapsto[]$

Thread pool:

\Rightarrow let c2 : ! N. =
fork ($\lambda \quad \mathrm{c} 2^{\prime}$,
let $c 1=\operatorname{send}\left(\# 1_{L}, c 2^{\prime}\right)$; let $(c 1, m)=\operatorname{recv}(c 1)$ close(c1))

```
let c2 = send(c2,10);
```

 close (c2)
 $\rightarrow \operatorname{let}\left(c 1^{\prime}, c\right)=\operatorname{recv}\left(\# 1_{R}\right)$ let $(c, n)=r e c v(c)$; let $c 1^{\prime}=\operatorname{send}\left(c 1^{\prime}, n\right)$ close(c); close(c1')

Heap:

Connectivity graph:
$\# 1_{L} \mapsto[]$
$\# 1_{R} \mapsto[]$

Thread pool:

let $c 2=\# 2_{L}$
let c2 $=$ send $(c 2,10)$; close(c2)

- let $\left(c 1^{\prime}, c\right)=\operatorname{recv}\left(\# 1_{R}\right)$ let (c,n) $=\operatorname{recv}(c)$;
let $c 1^{\prime}=\operatorname{send}\left(c 1^{\prime}, n\right)$
close(c) ; close(c1')
$\Rightarrow\left(\lambda \quad c 2^{\prime}\right.$,
let $c 1=\operatorname{send}\left(\# 1_{L}, c 2^{\prime}\right)$;
let $(c 1, m)=\operatorname{recv}(c 1)$ close(c1)) \#2

Heap:

$\# 1_{L} \mapsto[]$
$\# 1_{R} \mapsto[]$
$\# 2_{L} \mapsto[]$
$\# 2_{R} \mapsto[]$

Connectivity graph:

Thread pool:

$$
\begin{aligned}
& \Rightarrow \text { let } c 2=\# 2_{L} \\
& \quad \text { let } c 2=\operatorname{send}(c 2,10) \\
& \text { close }(c 2)
\end{aligned}
$$

$-\operatorname{let}\left(\mathrm{c} 1^{\prime}, \mathrm{c}\right)=\operatorname{recv}\left(\# 1_{R}\right)$ let $(c, n)=r e c v(c)$; let $c 1^{\prime}=\operatorname{send}\left(c 1^{\prime}, n\right)$ close(c); close(c1')
let $\mathrm{c} 1=\operatorname{send}\left(\# 1_{L}, \# 2_{R}\right)$; let $(c 1, m)=\operatorname{recv}(c 1)$ close(c1)

Heap:

$\# 1_{L} \mapsto[]$
$\# 1_{R} \mapsto[]$
$\# 2_{L} \mapsto[]$
$\# 2_{R} \mapsto[]$

Connectivity graph:


```
    Thread pool:
    let c2 = send(#2L,10);
    close(c2)
- let (c1',c) = recv(#1 R
    let (c,n) = recv(c);
    let c1' = send(c1',n)
    close(c); close(c1')
let c1 = send(#1,# #2 )
    let (c1,m) = recv(c1)
    close(c1)
```

Connectivity graph:

$$
\begin{aligned}
& \# 1_{L} \mapsto[] \\
& \# 1_{R} \mapsto[]
\end{aligned}
$$

Heap:

$$
\# 2_{L} \mapsto[]
$$

$$
\# 2_{R} \mapsto[]
$$

Thread pool:
let $c 2=\operatorname{send}\left(\# 2_{L}, 10\right)$; close(c2)
$\Rightarrow \operatorname{let}\left(c 1^{\prime}, c\right)=\operatorname{recv}\left(\# 1_{R}\right)$ let $(c, n)=\operatorname{recv}(c)$; let $c 1^{\prime}=\operatorname{send}\left(c 1^{\prime}, n\right)$ close(c); close(c1')

- let $(c 1, m)=\operatorname{recv}\left(\# 1_{L}\right)$ close(c1)

$$
\begin{aligned}
& \text { Heap: } \\
& \# 1_{L} \mapsto[] \\
& \# 1_{R} \mapsto\left[\# 2_{R}\right] \\
& \# 2_{L} \mapsto[] \\
& \# 2_{R} \mapsto[]
\end{aligned}
$$

Connectivity graph:

Thread pool:

let $c 2=\operatorname{send}\left(\# 2_{L}, 10\right)$; close (c2)
\Rightarrow let $\left(\mathrm{c} 1^{\prime}, \mathrm{c}\right)=\left(\# 1_{R}, \# 2_{R}\right)$ let $(c, n)=\operatorname{recv}(c)$; let $c 1^{\prime}=\operatorname{send}\left(c 1^{\prime}, n\right)$ close(c) ; close(c1')
$-\operatorname{let}(c 1, m)=\operatorname{recv}\left(\# 1_{L}\right)$ close(c1)

Heap:

$$
\begin{aligned}
& \# 1_{L} \mapsto[] \\
& \# 1_{R} \mapsto[]
\end{aligned}
$$

$$
\# 2_{L} \mapsto[]
$$

$$
\# 2_{R} \mapsto[]
$$

Connectivity graph:

Thread pool:
\Rightarrow let $c 2=\operatorname{send}\left(\# 2_{L}, 10\right)$; close (c2)
$-\operatorname{let}(c, n)=\operatorname{recv}\left(\# 2_{R}\right)$; let $\mathrm{c} 1^{\prime}=\operatorname{send}\left(\# 1_{R}, \mathrm{n}\right)$ close (c) ; close (c1')
$-\operatorname{let}(c 1, m)=\operatorname{recv}\left(\# 1_{L}\right)$ close(c1)

Heap:

$\# 1_{L} \mapsto[]$
$\# 1_{R} \mapsto[]$
$\# 2_{L} \mapsto[]$
$\# 2_{R} \mapsto[]$

Connectivity graph:

Thread pool:

$$
\Rightarrow \operatorname{close}\left(\# 2_{L}\right)
$$

let $(c, n)=\operatorname{recv}\left(\# 2_{R}\right)$; let $c 1^{\prime}=\operatorname{send}\left(\# 1_{R}, \mathrm{n}\right)$ close(c); close(c1')

- let $(c 1, m)=\operatorname{recv}\left(\# 1_{L}\right)$ close(c1)

Heap:

$\# 1_{L} \mapsto[]$
$\# 1_{R} \mapsto[]$
$\# 2_{L} \mapsto[]$
$\# 2_{R} \mapsto[10]$

Connectivity graph:

Thread pool:
()
\Rightarrow let $(c, n)=\operatorname{recv}\left(\# 2_{R}\right)$; let $\mathrm{c} 1^{\prime}=\operatorname{send}\left(\# 1_{R}, \mathrm{n}\right)$ close(c); close(c1')
$-\operatorname{let}(c 1, m)=\operatorname{recv}\left(\# 1_{L}\right)$ close(c1)

Heap:

$\# 1_{L} \mapsto[]$
$\# 1_{R} \mapsto[]$
$\# 2_{R} \mapsto[10]$

Connectivity graph:

Thread pool:
()
\Rightarrow let $c 1^{\prime}=\operatorname{send}\left(\# 1_{R}, 10\right)$ close (\#2 ${ }_{R}$) ; close (c1')

- let $(c 1, m)=\operatorname{recv}\left(\# 1_{L}\right)$ close(c1)

Heap:
$\# 1_{L} \mapsto[]$
$\# 1_{R} \mapsto[]$
$\# 2_{R} \mapsto[]$

Connectivity graph:

Thread pool:
()
\Rightarrow close $\left(\# 2_{R}\right)$; close $\left(\# 1_{R}\right)$
let $(c 1, m)=\operatorname{recv}\left(\# 1_{L}\right)$ close(c1)

Heap:
 $\# 1_{L} \mapsto[10]$
 $\# 1_{R} \mapsto[]$

$\# 2_{R} \mapsto[]$

Connectivity graph:

Thread pool:
()
()
\Rightarrow let $(c 1, m)=\operatorname{recv}\left(\# 1_{L}\right)$ close(c1)

Heap:

$\# 1_{L} \mapsto[10]$

Connectivity graph:

Thread pool:
()
()
$\Rightarrow \operatorname{close}\left(\# 1_{L}\right)$

Heap:
Connectivity graph:
$\# 1_{L} \mapsto[]$

Thread pool:
()
()
()

Heap:
Connectivity graph:

T3

Thread pool:
()
()
()

Heap:
Connectivity graph:

Theorem (Deadlock and memory leak freedom)
If the configuration cannot step, then all threads are () and the heap is empty.

Thread pool:
()
()
()

Heap:

Connectivity graph:

T2
T3

Theorem (Deadlock and memory leak freedom)
If the configuration cannot step, then all threads are () and the heap is empty.
Theorem (Progress)
If the configuration is well-formed, and if there exists a non-() thread or a buffer in the heap, then the configuration can step.
Theorem (Preservation)
Well-formed configurations step to well-formed configurations.

```
// no counter party
let c1 = fork(\lambdac1', ())
receive(c1)
```


// protocol violation
let $c 1=$ fork($\lambda c 1^{\prime}$, receive(c1'); ...)
$\mathrm{T} 1 \rightarrow(\mathrm{C} 1) \leftrightarrows \mathrm{T} 2$
receive(c1)

```
// circular dependency
let c1 = fork(\lambda c1', send(c1',c1'))
let (c1,c1') = receive(c1)
let c2 = fork(\lambda c2',
        let (c2',v) = receive(c2')
        send(c1',v); ...)
```


T2
// memory leak
let $\left.c 1=\operatorname{fork}\left(\lambda c 1^{\prime},()\right)\right)$
let $c 2=$ fork($\lambda c 2$ ', ())
send ($c 2, c 1$)
send $(c 1, c 2)$

T2
send (c1,c2)

Waiting induction principle

Waiting induction principle

Lemma (Waiting induction)
Assume that the undirected erasure of the graph is acyclic. To prove $P(v)$, we may assume that $v \triangleright w \Longrightarrow P(w)$ for all $w \in V$.

Waiting induction principle

Lemma (Waiting induction)
Assume that the undirected erasure of the graph is acyclic.
To prove $P(v)$, we may assume that $v \triangleright w \Longrightarrow P(w)$ for all $w \in V$.
Graph acyclicity reasoning is encapsulated in generic waiting induction.

- The progress proof does local, language specific reasoning.

T1
$\stackrel{s}{\longleftrightarrow}$ C $\stackrel{\bar{s}}{\leftrightarrows}$

(C) --- ?
$\frac{\Gamma=\{x \mapsto \tau\}}{\Gamma \vdash x: \tau} \quad \frac{.}{\emptyset \vdash(): \mathbf{1}} \quad \frac{n \in \mathbb{N}}{\emptyset \vdash n: \mathbf{N}} \quad \frac{\Gamma_{1} \vdash e_{1}: \tau_{1} \quad \Gamma_{2} \vdash e_{2}: \tau_{2}}{\Gamma_{1} \uplus \Gamma_{2} \vdash\left(e_{1}, e_{2}\right): \tau_{1} \times \tau_{2}}$

$$
\frac{\Gamma \uplus\left\{x \mapsto \tau_{1}\right\} \vdash e: \tau_{2}}{\Gamma \vdash \lambda x . e: \tau_{1} \multimap \tau_{2}} \quad \frac{\Gamma_{1} \vdash e_{1}: \tau_{1} \multimap \tau_{2} \quad \Gamma_{2} \vdash e_{2}: \tau_{1}}{\Gamma_{1} \uplus \Gamma_{2} \vdash e_{1} e_{2}: \tau_{2}}
$$

$$
\frac{\Gamma_{1} \vdash e_{1}: \tau_{1} \quad \Gamma_{2} \uplus\left\{x \mapsto \tau_{1}\right\} \vdash e_{2}: \tau_{2}}{\Gamma_{1} \uplus \Gamma_{2} \vdash \text { let } x=e_{1} \text { in } e_{2}: \tau_{2}} \quad \frac{\Gamma_{1} \vdash e_{1}: \mathbf{N} \quad \Gamma_{2} \vdash e_{2}: \tau \quad \Gamma_{2} \vdash e_{3}: \tau}{\Gamma_{1} \uplus \Gamma_{2} \vdash \text { if } e_{1} \text { then } e_{2} \text { else } e_{3}: \tau}
$$

$\frac{\Gamma \vdash e: \bar{s} \multimap 1}{\Gamma \vdash \operatorname{fork}(e): s} \quad \frac{\Gamma_{1} \vdash e_{1}:!\tau . s \quad \Gamma_{2} \vdash e_{2}: \tau}{\Gamma_{1} \uplus \Gamma_{2} \vdash \operatorname{send}\left(e_{1}, e_{2}\right): s}$
$\frac{\Gamma \vdash e: ? \tau . s}{\Gamma \vdash \operatorname{receive}(e): s \times \tau} \quad \frac{\Gamma \vdash e: \text { End }}{\Gamma \vdash \operatorname{close}(e): \mathbf{1}}$

$$
\frac{\ulcorner\Gamma=\{x \mapsto \tau\}\urcorner}{\Gamma \vdash x: \tau} * \quad \frac{E m p}{\emptyset \vdash(): \mathbf{1}} * \quad \frac{\ulcorner n \in \mathbb{N}\urcorner}{\emptyset \vdash n: \mathbf{N}} * \quad \frac{\Gamma_{1} \vdash e_{1}: \tau_{1} * \Gamma_{2} \vdash e_{2}: \tau_{2}}{\Gamma_{1} \uplus \Gamma_{2} \vdash\left(e_{1}, e_{2}\right): \tau_{1} \times \tau_{2}} *
$$

$$
\frac{\Gamma \uplus\left\{x \mapsto \tau_{1}\right\} \vdash e: \tau_{2}}{\Gamma \vdash \lambda x . e: \tau_{1} \multimap \tau_{2}^{*}} \quad \frac{\Gamma_{1} \vdash e_{1}: \tau_{1} \multimap \tau_{2} * \Gamma_{2} \vdash e_{2}: \tau_{1}}{\Gamma_{1} \uplus \Gamma_{2} \vdash e_{1} e_{2}: \tau_{2}} *
$$

$$
\frac{\Gamma_{1} \vdash e_{1}: \tau_{1} * \Gamma_{2} \uplus\left\{x \mapsto \tau_{1}\right\} \vdash e_{2}: \tau_{2}}{\Gamma_{1} \uplus \Gamma_{2} \vdash \text { let } x=e_{1} \text { in } e_{2}: \tau_{2}} * \quad \frac{\Gamma_{1} \vdash e_{1}: \mathbf{N} *\left(\Gamma_{2} \vdash e_{2}: \tau \wedge \Gamma_{2} \vdash e_{3}: \tau\right)}{\Gamma_{1} \uplus \Gamma_{2} \vdash \text { if } e_{1} \text { then } e_{2} \text { else } e_{3}: \tau} *
$$

$\frac{\Gamma \vdash e: \bar{s} \multimap 1}{\Gamma \vdash f o r k(e): s} * \quad \frac{\Gamma_{1} \vdash e_{1}:!\tau . s * \Gamma_{2} \vdash e_{2}: \tau}{\Gamma_{1} \uplus \Gamma_{2} \vdash \operatorname{send}\left(e_{1}, e_{2}\right): s} *$
$\frac{\Gamma \vdash e: ? \tau . s}{\Gamma \vdash \operatorname{receive}(e): s \times \tau} * \quad \frac{\Gamma \vdash e: \text { End }}{\Gamma \vdash \operatorname{close}(e): \mathbf{1}} *$

$$
\frac{\operatorname{own}(\operatorname{Chan}(a) \mapsto(t, s))}{\emptyset \vdash \# a_{t}: s} * \quad\left(\frac{\text { Arjen Rouvoet }}{\Gamma \vdash e: \tau: i \operatorname{Prop}} *\right)
$$

Connectivity graphs:
$\operatorname{Cgraph}(V, L) \triangleq\{G \in V \times V \stackrel{\text { fin }}{ } L \mid G$ has no undirected cycles $\}$

Connectivity graphs:
$\operatorname{Cgraph}(V, L) \triangleq\{G \in V \times V \stackrel{\text { fin }}{ } L \mid G$ has no undirected cycles $\}$
Instantiation:

$$
v \in V::=\operatorname{Thread}(i) \mid \operatorname{Chan}(a) \quad I \in L \triangleq\{0,1\} \times \text { Session }
$$

Connectivity graphs:

$$
\operatorname{Cgraph}(V, L) \triangleq\{G \in V \times V \stackrel{\text { fin }}{ } L \mid G \text { has no undirected cycles }\}
$$

Instantiation:

$$
v \in V::=\operatorname{Thread}(i) \mid \operatorname{Chan}(a) \quad l \in L \triangleq\{0,1\} \times \text { Session }
$$

Generic well-formedness:

$$
\mathrm{wf}(P) \triangleq \exists G: \operatorname{Cgraph}(V, L) \cdot \forall v \in V \cdot P(v, \operatorname{in}(G, v))(\operatorname{out}(G, v))
$$

Connectivity graphs:

$$
\operatorname{Cgraph}(V, L) \triangleq\{G \in V \times V \stackrel{\text { fin }}{\sim} L \mid G \text { has no undirected cycles }\}
$$

Instantiation:

$$
v \in V::=\operatorname{Thread}(i) \mid \operatorname{Chan}(a) \quad l \in L \triangleq\{0,1\} \times \text { Session }
$$

Generic well-formedness:

$$
\mathrm{wf}(P) \triangleq \exists G: C g r a p h(V, L) . \forall v \in V \cdot P(v, \operatorname{in}(G, v))(\operatorname{out}(G, v))
$$

Local well-formedness predicate:

$$
P: V \times \text { Multiset } L \rightarrow(V \stackrel{\text { fin }}{ } L) \rightarrow \text { Prop }
$$

P can talk about incoming label multiset and outgoing edges.

Connectivity graphs:

$$
\operatorname{Cgraph}(V, L) \triangleq\{G \in V \times V \stackrel{\text { fin }}{\sim} L \mid G \text { has no undirected cycles }\}
$$

Instantiation:

$$
v \in V::=\operatorname{Thread}(i) \mid \operatorname{Chan}(a) \quad I \in L \triangleq\{0,1\} \times \text { Session }
$$

Generic well-formedness:

$$
\mathrm{wf}(P) \triangleq \exists G: C g r a p h(V, L) . \forall v \in V \cdot P(v, \operatorname{in}(G, v))(\mathrm{out}(G, v))
$$

Local well-formedness predicate:

$$
P: V \times \text { Multiset } L \rightarrow(V \xrightarrow{\text { fin }} L) \rightarrow \text { Prop }
$$

P can talk about incoming label multiset and outgoing edges.

- Threads: expression is well-typed w.r.t. the session types on its outgoing edges.

Connectivity graphs:

$$
\operatorname{Cgraph}(V, L) \triangleq\{G \in V \times V \stackrel{\text { fin }}{\sim} L \mid G \text { has no undirected cycles }\}
$$

Instantiation:

$$
v \in V::=\operatorname{Thread}(i) \mid \operatorname{Chan}(a) \quad I \in L \triangleq\{0,1\} \times \text { Session }
$$

Generic well-formedness:

$$
\mathrm{wf}(P) \triangleq \exists G: C g r a p h(V, L) . \forall v \in V \cdot P(v, \operatorname{in}(G, v))(\mathrm{out}(G, v))
$$

Local well-formedness predicate:

$$
P: V \times \text { Multiset } L \rightarrow(V \xrightarrow{\text { fin }} L) \rightarrow \text { Prop }
$$

P can talk about incoming label multiset and outgoing edges.

- Threads: expression is well-typed w.r.t. the session types on its outgoing edges.
- Channels: the two incoming labels are dual up to the values in the buffers.

Connectivity graphs:

$$
\operatorname{Cgraph}(V, L) \triangleq\{G \in V \times V \stackrel{\text { fin }}{\sim} L \mid G \text { has no undirected cycles }\}
$$

Instantiation:

$$
v \in V::=\operatorname{Thread}(i) \mid \operatorname{Chan}(a) \quad I \in L \triangleq\{0,1\} \times \text { Session }
$$

Generic well-formedness:

$$
\mathrm{wf}(P) \triangleq \exists G: C g r a p h(V, L) . \forall v \in V \cdot P(v, \operatorname{in}(G, v))(\operatorname{out}(G, v))
$$

Local well-formedness predicate:

$$
P: V \times \text { Multiset } L \rightarrow(V \xrightarrow{\text { fin }} L) \rightarrow \text { Prop }
$$

P can talk about incoming label multiset and outgoing edges.

- Threads: expression is well-typed w.r.t. the session types on its outgoing edges.
- Channels: the two incoming labels are dual up to the values in the buffers.
- Intuition: outgoing edges = who we own, incoming edges = who owns us, and at which types.

Connectivity graphs:

$$
\operatorname{Cgraph}(V, L) \triangleq\{G \in V \times V \stackrel{\text { fin }}{\sim} L \mid G \text { has no undirected cycles }\}
$$

Instantiation:

$$
v \in V::=\operatorname{Thread}(i) \mid \operatorname{Chan}(a) \quad l \in L \triangleq\{0,1\} \times \text { Session }
$$

Generic well-formedness:

$$
\mathrm{wf}(P) \triangleq \exists G: C g r a p h(V, L) . \forall v \in V \cdot P(v, \operatorname{in}(G, v))(\operatorname{out}(G, v))
$$

Local well-formedness predicate:

$$
P: V \times \text { Multiset } L \rightarrow(V \xrightarrow{\text { fin }} L) \rightarrow \text { Prop }
$$

P can talk about incoming label multiset and outgoing edges.

- Threads: expression is well-typed w.r.t. the session types on its outgoing edges.
- Channels: the two incoming labels are dual up to the values in the buffers.
- Intuition: outgoing edges = who we own, incoming edges = who owns us, and at which types.
- P connects out (G, v) and $\operatorname{in}(G, v)$ with the local configuration state of v.

Connectivity graphs:

$$
\operatorname{Cgraph}(V, L) \triangleq\{G \in V \times V \stackrel{\text { fin }}{\sim} L \mid G \text { has no undirected cycles }\}
$$

Instantiation:

$$
v \in V::=\operatorname{Thread}(i) \mid \operatorname{Chan}(a) \quad l \in L \triangleq\{0,1\} \times \text { Session }
$$

Generic well-formedness:

$$
\mathrm{wf}(P) \triangleq \exists G: C g r a p h(V, L) . \forall v \in V \cdot P(v, \operatorname{in}(G, v))(\operatorname{out}(G, v))
$$

Local well-formedness predicate:

$$
P: V \times \text { Multiset } L \rightarrow i \text { Prop }
$$

P can talk about incoming label multiset and outgoing edges.

- Threads: expression is well-typed w.r.t. the session types on its outgoing edges.
- Channels: the two incoming labels are dual up to the values in the buffers.
- Intuition: outgoing edges $=$ who we own, incoming edges $=$ who owns us, and at which types.
- P connects out (G, v) and $\operatorname{in}(G, v)$ with the local configuration state of v.
- Separation logic: iProp $\triangleq(V \xrightarrow{\text { fin }} L) \rightarrow$ Prop

Graph transformations in separation logic

Lemmas for maintaining $w f(P)$ when adding, removing, and relabeling edges, and exchanging separation logic resources.

Graph transformations in separation logic

Lemmas for maintaining $w f(P)$ when adding, removing, and relabeling edges, and exchanging separation logic resources.

Lemma (Exchange)

Let $v_{1}, v_{2} \in V$. To prove $\mathrm{wf}(P)$ implies $\mathrm{wf}\left(P^{\prime}\right)$, it suffices to prove:

1. $P(v, \Delta) \rightarrow P^{\prime}(v, \Delta)$ for all $v \in V \backslash\left\{v_{1}, v_{2}\right\}$ and $\Delta \in$ Multiset L
2. $P\left(v_{1}, \Delta_{1}\right) * \exists$ I. own $\left(v_{2} \mapsto I\right) * \forall \Delta_{2} \in$ Multiset L. $P\left(v_{2},\{/\} \uplus \Delta_{2}\right)$

$$
* \exists I^{\prime} .\left(\operatorname{own}\left(v_{2} \mapsto I^{\prime}\right) * P^{\prime}\left(v_{1}, \Delta_{1}\right)\right) * P^{\prime}\left(v_{2},\left\{I^{\prime}\right\} \uplus \Delta_{2}\right)
$$

for all $\Delta_{1} \in$ Multiset L
Preservation proof appears to do no graph reasoning at all!

- The construction of the new connectivity graph, and the proof of its acyclicity, is encapsulated in the generic lemmas.
- The preservation proof does only local, language specific reasoning about P.

Mechanization

Our language:

1. Functional (sums, products, closures, etc.) + session-typed channels
2. Linear and unrestricted types

- Unrestricted: numbers, sums, products, unrestricted function type (\rightarrow)
- Linear: channels, sums, products, linear function type (-)

3. General recursive types: coinductive method adapted from Gay et al. [2020]

- Recursive session types, including through the message
- Algebraic data types using recursion + sums + products

Mechanization

Our language:

1. Functional (sums, products, closures, etc.) + session-typed channels
2. Linear and unrestricted types

- Unrestricted: numbers, sums, products, unrestricted function type (\rightarrow)
- Linear: channels, sums, products, linear function type (-)

3. General recursive types: coinductive method adapted from Gay et al. [2020]

- Recursive session types, including through the message
- Algebraic data types using recursion + sums + products

Mechanization:

- Cgraph (V, L) library: 4988 LOC
- Language definition: 447 LOC
- Deadlock and leak freedom proof: 2542 LOC

Mechanization

Our language:

1. Functional (sums, products, closures, etc.) + session-typed channels
2. Linear and unrestricted types

- Unrestricted: numbers, sums, products, unrestricted function type (\rightarrow)
- Linear: channels, sums, products, linear function type (-)

3. General recursive types: coinductive method adapted from Gay et al. [2020]

- Recursive session types, including through the message
- Algebraic data types using recursion + sums + products

Mechanization:

- Cgraph (V, L) library: 4988 LOC
- Language definition: 447 LOC
- Deadlock and leak freedom proof: 2542 LOC

Initial direct attempt: proofs goals got too complex.
Graph reasoning intertwined with language specifics.
Encapsulating the graph reasoning made it manageable.

Questions?

julesjacobs@gmail.com

These slides: julesjacobs.com/slides/vest2021.pdf

