Binary Search a Little Simpler & More Generic

Jules Jacobs

5 December 2020

1 Introduction

The usual binary search algorithm allows us to find the location of an item x in a sorted array A,
using the function mid(L,R) = floor((L + R)/2) to cut the search range in half:

function binary_search(A,x){
var L = 0
var R = length(A) - 1
while (L <= R){
val m = mid(L,R)
if(A[m] < x){
L=m+ 1
}else if (A[m] > x){
R=m -1
}elsedq
return Some (m)
}
}
return None

}

This algorithm is fine as it is, but sometimes we want to find the last position in A that has an
item < x, for instance when searching for which child to descend down to in an internal node of a
B-tree. Modifying the algorithm above to accomplish this may seem like a trivial task, but it turns out
to be a minefield of off-by-1 errors. It is better to start from scratch and generalize.

2 A simple binary search algorithm

Suppose we have some predicate p : Int — Bool, and are given indices L < R such that p(L) = false
and p(R) = true. We want to find an index between L and R where p flips from false to true:

// precondition: L<R && p(L)==false && p(R)==true
// requirement: if R-L > 1 then L < mid(L,R) < R
function binary_search(L,R,p){
while(R - L > 1){
val m = mid(L,R)
if(p(m)) R = m
else L = m
+
return (L,R)

}
// postcondition: R=L+1 && p(L)==false && p(R)==true

A few notes about this algorithm:

* The loop invariant L < RA p(L) = false A P(R) = true is maintained.

* The value of R— L strictly decreases on each iteration, so the algorithm terminates. In the worst
case, the number of iterations is precisely ceil((logo(R—L +1)) =min{fn € N:R—L < 2"}.

* When the loop exits, we have R—L < 1AL <R = R =L + 1, so the returned pair (L,R)
precisely indicates the point where p flips from f alse to true.

* Although the precondition mentions p(L) and p(R), the algorithm only calls p on indices strictly
between the initial L and R.

* We do not require that p has only one point where it flips from f alse to true. If there is more
than one, then binary search algorithm will find one of those points.

» Whereas the previous algorithm returned Some (m) or None depending on whether it found x,
this algorithm always returns a result.

* A very similar formulation of binary search was given in a 1995 handwritten article by Netty
van Gasteren and Wim Feijen.!

3 Searching an array

LetA=1[2,3,3,3,6,8,8,9] be a sorted array. Given a particular number x, we can ask four different
questions:

(Q1) Where is the last number < x?
(Q2) Where is the first number > x?
(Q3) Where is the last number < x?

(Q4) Where is the first number > x?

These questions can be answered by binary_search:

(Q1,Q2) = binary_search(-1, length(A), function(i){ A[il>=x })
(Q3,Q4) binary_search (-1, length(A), function(i){ A[il>x })

The results Q1,Q2,Q3, Q4 answer the corresponding questions. Corner cases are handled nicely: if
we ask "Where’s the first number < 0 in A", then the answer is —1, and if we ask "Where’s the last
number > 10 in A, then the answer is length(A). One can think of this as artificially putting:

A[—1]=—o0 Allength(A)] = +o00
So that:
p(—1) =false p(length(A)) = true

Note that binary_search(L,R,p) only calls p on numbers strictly between L and R, so the
array is never accessed out of bounds, even though we put L = —1 and R = length(A), which are
themselves out of bounds.

!Thanks to Tom Verhoeff for pointing this out.

http://www.mathmeth.com/wf/files/wf2xx/wf214.pdf

4 Finding a particular element
We may also ask:

* Is x in the array, and if so, where is the first x and where is the last x?

* Find the range of indices that contain x.

The second question is the easier one: it’s the range Q2...Q3. If x does not appear in the array, then
the range has Q3 = Q2 —1 and the empty range indicates between which two elements x would have
to be found. We answer the first question as follows:

function find_first(A,x){
(_,R) = binary_search(-1, length(A), function(i){ A[il>=x })
if (R < length(A) && A[R] == x) return Some(R)
else return None

}

function find_last (A,x){
(L,_) = binary_search(-1, length(A), function(i){ A[il>x 3})
if (L > -1 && A[L] == x) return Some(L)
else return None

}

Perhaps surprisingly, this binary search algorithm can be more efficient than the original binary
search, provided one inlines the predicate. The original binary search loop tries to bail out early if it
happens to find an element equal to x early on, but the small probability of that happening doesn’t
outweigh the extra test and branch on each iteration.

The if inside the simplified binary search can be compiled to two conditional move instructions,
thus eliminating all branches in the loop. Furthemore, if the array size is known, for instance when
searching B-tree nodes of 31 elements, it suffices to execute 5 iterations of the loopz, SO one can
unroll:

L = -1
R = 31
m = mid(L,R)

if(A[m] >= x) R = m else L =m
m = mid(L,R)
if(A[m] >= x) R = m else L =m
m = mid(L,R)
if(A[m] >= x) R =m else L =m
m = mid(L,R)
if(A[m] >= x) R = m else L =m
m = mid(L,R)
if(A[m] >= x) R = m else L =m

For more information about optimizing binary search, read the excellent article by Paul Khuong.?

2By picking the array length to be 2" — 1, we can pick the middle element of the range on each iteration, and binary
search will need exactly n iterations. For other array sizes there won’t be a middle element on some iterations because an
array of even length doesn’t have a middle element. Thus, arrays of length 2" — 1 are optimal for binary search.

3http ://pvk.ca/Blog/2012/07/03/binary-search-star-eliminates-star-branch-mispredictions/

http://pvk.ca/Blog/2012/07/03/binary-search-star-eliminates-star-branch-mispredictions/

5 Generalized binary search

In order for the mid (L ,R) function to work, we need to know that R— L > 1, so that mid can actually
find an index i strictly between L < i < R. The loop test checks this condition. It therefore makes
sense to move this check into the mid function:

mid(L,R) = if(R - L > 1) then Some(floor ((L+R)/2)) else None
So that mid returns an Option[Int]. We can then write binary search as follows:

function binary_search(L,R,p){
while (true){
case mid(L,R){

None => return (L,R)
Some (m) => if(p(m)) then R = m
else L = m

}
Or, in functional, recursive style:

function binary_search(L,R,p){
case mid (L,R){
None => (L,R)
Some (m) => if p(m) then binary_search(L,m,p)
else binary_search(m,R,p)
+
}

By picking a different mid function, we get a different search:

* For forward linear search, pick
mid(L,R) = if(R-L > 1) then Some(L+1) else None.

* For backward linear search, pick
mid(L,R) = if(R-L > 1) then Some(R-1) else None.

5.1 Searching floats

We can also search floating point numbers, instead of integers:

* For floating point search, pick
mid_float(L,R) = if(R-L > eps) then Some((L+R)/2) else None.

This allows us to bisect floating point equations, such as x? = 2:
binary_search (1.0, 2.0, function(x){ x*xx >= 2 })

However, there is a much better way to do bisection on floats: instead of taking the midpoint (L +R)/2,
we take the midpoint between the two floats L and R in the binary representation. That is, suppose that
f2b : Float64 -> Int64 gives you the bitwise representation and bf2 : Int64 -> Float64
converts back, we pick the midpoint:*

*I'm assuming that £b2 is respects ordering, that is, comparing £2b(x) < £2b(y) gives the same result as comparing
the floats x < y. Depending on the bit representation of floats, one would have to shuffle the mantissa and exponent and
sign bits around to ensure this.

function mid_float (L,R){
case mid (£2b(L),f2b(R)){
None => None
Some (bits) => b2f(bits)
}
}

Where mid is the mid function on integers. Using mid_float, we can determine the precise floating
point number x at which the predicate x*xx >= 2 flips from false to true in at most 64 iterations!

5.2 Searching lattices

Instead of searching for numbers, we can even search in lattices. Suppose that we have a predicate
p : 25 — Bool on subsets of a finite set S. Given two sets L C R the mid_set (L,R) function shall
give None if [R—L| = 1 and some set M such that L € M C R otherwise. Then the binary search
algorithm can give us sets L,R such that R = L U {x} for a single element x € S, with p(L) = false
and p(R) = true. By picking M to be L plus half of the elements of R — L, the algorithm terminates
in O(log |R — L|) iterations.

What else can you make binary search do?

	Introduction
	A simple binary search algorithm
	Searching an array
	Finding a particular element
	Generalized binary search
	Searching floats
	Searching lattices

