DIVISIBILITY OF MULTINOMIAL COEFFICIENTS

Jules Jacobs

February 12, 2022

Together with Ike Mulder we discovered a fun little divisibility property of multinomial coefficients (probably well-known!).

Our starting point is that not only the binomial coefficient $\frac{(a+b)!}{a!b!}$ is a whole number, but also the Catalan numbers $\frac{(2n)!}{n!(n+1)!} = \frac{(2n)!}{n!n!}/(n+1)$ are whole numbers. That (a + b)! is divisible by a!b! is already a minor miracle, but the Catalan numbers show that binomial coefficient $\frac{(2n)!}{n!n!}$ can be divided even further. Our question is: does this generalize to other binomial coefficients?

The answer turns out to be yes: if gcd(a, b) = 1 then $\frac{(a+b-1)!}{a!b!}$ is a whole number. This implies the Catalan divisibility because gcd(n, n + 1) = 1.

This generalizes to multinomial coefficients:

Lemma. If $gcd(a_1, \ldots, a_n) = 1$ then

$$\frac{(a_1 + \dots + a_n - 1)!}{a_1! \cdots a_n!} \tag{1}$$

is a whole number.

Proof. From the gcd assumption, we have integers k_1, \ldots, k_n such that

$$\mathbf{I} = a_1 k_1 + \dots + a_n k_n$$

Multiply both sides by (1):

$$\frac{(a_1 + \dots + a_n - 1)!}{a_1! \cdots a_n!} = \frac{(a_1 + \dots + a_n - 1)!}{a_1! \cdots a_n!} a_1 k_1 + \dots + \frac{(a_1 + \dots + a_n - 1)!}{a_1! \cdots a_n!} a_n k_n$$
$$= \frac{(a_1 + \dots + a_n - 1)!}{(a_1 - 1)! \cdots a_n!} k_1 + \dots + \frac{(a_1 + \dots + a_n - 1)!}{a_1! \cdots (a_n - 1)!} k_n$$

The right hand side is an integer because multinomial coefficients are integers.

Slightly more generally, the proof shows that $\frac{(a_1+\dots+a_n-1)! \operatorname{gcd}(a_1,\dots,a_n)}{a_1!\dots a_n!}$ is always a whole number.