DIVISIBILITY OF MULTINOMIAL COEFFICIENTS

Jules Jacobs

February 12, 2022

Together with Ike Mulder we discovered a fun little divisibility property of multinomial coefficients (probably well-known!).
Our starting point is that not only the binomial coefficient $\frac{(a+b)!}{a!b!}$ is a whole number, but also the Catalan numbers $\frac{(2 n)!}{n!(n+1)!}=\frac{(2 n)!}{n!n!} /(n+1)$ are whole numbers. That $(a+b)!$ is divisible by $a!b$! is already a minor miracle, but the Catalan numbers show that binomial coefficient $\frac{(2 n)!}{n!n!}$ can be divided even further. Our question is: does this generalize to other binomial coefficients?
The answer turns out to be yes: if $\operatorname{gcd}(a, b)=1$ then $\frac{(a+b-1)!}{a!b!}$ is a whole number. This implies the Catalan divisibility because $\operatorname{gcd}(n, n+1)=1$.

This generalizes to multinomial coefficients:
Lemma. If $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=1$ then

$$
\begin{equation*}
\frac{\left(a_{1}+\cdots+a_{n}-1\right)!}{a_{1}!\cdots a_{n}!} \tag{1}
\end{equation*}
$$

is a whole number.
Proof. From the gcd assumption, we have integers $\mathrm{k}_{1}, \ldots, \mathrm{k}_{\mathrm{n}}$ such that

$$
1=a_{1} k_{1}+\cdots+a_{n} k_{n}
$$

Multiply both sides by (1):

$$
\begin{aligned}
\frac{\left(a_{1}+\cdots+a_{n}-1\right)!}{a_{1}!\cdots a_{n}!} & =\frac{\left(a_{1}+\cdots+a_{n}-1\right)!}{a_{1}!\cdots a_{n}!} a_{1} k_{1}+\cdots+\frac{\left(a_{1}+\cdots+a_{n}-1\right)!}{a_{1}!\cdots a_{n}!} a_{n} k_{n} \\
& =\frac{\left(a_{1}+\cdots+a_{n}-1\right)!}{\left(a_{1}-1\right)!\cdots a_{n}!} k_{1}+\cdots+\frac{\left(a_{1}+\cdots+a_{n}-1\right)!}{a_{1}!\cdots\left(a_{n}-1\right)!} k_{n}
\end{aligned}
$$

The right hand side is an integer because multinomial coefficients are integers.
Slightly more generally, the proof shows that $\frac{\left(a_{1}+\cdots+a_{n}-1\right)!\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)}{a_{1}!\cdots a_{n}!}$ is always a whole number.

