
A Q U I C K I N T R O D U C T I O N T O Q UA N T U M P R O G R A M M I N G

Jules Jacobs

September 26, 2021

This note is a quick introduction to quantum programming in the circuit model.
A quantum computer on k bits gets as input a quantum circuit description, and
produces as output a random string of k bits according to a probability distribution
determined by the quantum circuit. A quantum programming language in this
model is a language for creating such quantum circuits.

After reading this note, you will understand the Deutsch-Jozsa quantum algo-
rithm, which demonstrates that quantum computers can solve some problems
asymptotically faster than classical computers.

You will also be able to write a computer program that simulates a quantum
computer, albeit exponentially more slowly than an actual quantum computer
would execute a circuit, which is the point!

1 quantum states

Imagine that we have a box with some physical system inside of it, with a finite set S of possible
states. A probability distribution over S is a vector ®p of probabilities, one probability px ∈ [0, 1]
for each state x ∈ S, such that

∑
x px = 1.

A quantum state over S, on the other hand, is a vector ®φ of probability amplitudes, one complex
number φx ∈ C for each state x ∈ S. If we measure such a quantum state, we obtain outcome
x ∈ S with probability px = |φx |2. Thus, in order for φ to be a proper quantum state, we must
have

∑
x |φx |2 = 1.

2 time evolution in quantum mechanics

Imagine that the system in the box evolves in time according to some laws of physics. In
quantum mechanics, the state evolution is given by a matrix U that multiplies the state every
time step. If the state is currently φ, then at the next time step the state is Uφ. If there are
n = |S| possible states, then U is an n×n matrix. Only matrices that preserve the condition
that the probabilities sum to 1 are allowed: if

∑
x |φx |2 = 1 we must have

∑
x |(Uφ)x |2 = 1.

Such matrices are called unitary.

It might be helpful to compare with probabilistic evolution of the state as in a Markov chain.
In that case we model the state with a probability vector ®p and we multiply this vector with a
matrix M at each time step. If the state is currently p, then at the next time step the state is Mp.
Matrices that preserve the condition that all probabilities are non-negative and that their sum
remains 1 are called stochastic matrices. The entry Mx,y of the matrix is the probability that the
system will step to state y, if the state is currently x. In the quantum case, the entry Ux,y of the
unitary matrix is the probability amplitude of next state being y, if the state is currently x.

3 what a quantum computer is

A quantum computer with state set S is a device where we can input such a matrix U and an
initial state x ∈ S. It will then do one step of time evolution using U, and it will measure the

1

new state and tell us which outcome y ∈ S it got. Thus, a quantum computer is a kind of
universal quantum mechanics simulator:

1. We input the initial state x ∈ S and matrix U
2. The quantum computer outputs answer y ∈ S with probability |Ux,y |2

One should probably not think of quantum computers as a replacement for classical computers,
but rather as coprocessors (like GPUs) that allow you to perform some subroutines asymptoti-
cally faster. For instance, Shor’s algorithm for prime factorization is a classical algorithm that
makes use of a period finding subroutine that is run on a quantum computer.

We will now look at how the matrix U is represented as a quantum circuit.

4 quantum circuits

In physics, the state set S is often infinite, and sometimes even uncountably infinite (e.g. the
position of a particle), but in quantum programming the set S = {0, 1}k is taken to be strings of
k bits, so that |S| = 2k. Still, this means that U is a 2k-by-2k matrix. One might wonder how
we even input the U to the quantum computer, if it contains an exponential amount of data.

The answer is that we can’t quite input any matrix U; it must be encoded as a quantum circuit.
A quantum circuit is a sequence of unitary operations we do on the state of n bits, where each
operation operates on some small subset of the bits and leaves the rest of the bits alone.

Often, a small set of primitive operations is used, such as the Hadamard gate and the CCNOT
gate. The Hadamard gate operates on one bit, and the CCNOT gate operates on three bits.

In order to describe what they do, we introduce a bit of notation for basis states. We use the
notation φ = |01001〉 for the basis state φ where φ01001 = 1 and φx = 0 otherwise, i.e.,the
state that puts all probability amplitude on 01001. Because gates are linear operators, it is
sufficient to define their behavior on basis states |x〉 for x ∈ {0, 1}k, since for a superposition
φ =

∑
xφx |x〉 we have Aφ =

∑
xφxA |x〉 for a gate A.

4.1 The Hadamard gate

The Hadamard gate H operates on one bit, and is defined as:

H |0〉 = 1√
2

(
|0〉 + |1〉

)
H |1〉 = 1√

2

(
|0〉 − |1〉

)
Equivalently, we can define it using matrix notation, as

H =
1√
2

(
1 1

1 −1

)
If we have n bits in the state, then we have Hadamard gates H1, H2, · · · , Hn, each operating on
a different bit. This is what H1 does:

H1 |0b1b2 · · · bn〉 =
1√
2

(
|0b1b2 · · · bn〉 + |1b1b2 · · · bn〉

)
(1)

H1 |1b1b2 · · · bn〉 =
1√
2

(
|0b1b2 · · · bn〉 − |1b1b2 · · · bn〉

)
(2)

2

Try writing down H1 as a 2n-by-2n matrix, and you’ll see why this notation is useful.

4.2 Classical gates

Given a function f : {0, 1}k → {0, 1}k on bit strings of length k, we define the classical gate Cf:

Cf |x〉 = |f(x)〉 (3)

That is, given a basis state |x〉, it outputs another basis state |f(x)〉. The function f must be
bijective in order for this to be a unitary operator.

A common trick is to start with a boolean function g : {0, 1}k−1 → {0, 1} and define

f(b1, · · · ,bk−1,bk) = (b1, · · · ,bk−1,bk ⊕ g(b1, · · · ,bk−1)) (4)

This function f leaves the first k− 1 bits alone, and XORs the last bit with g(b1, · · · ,bk−1). You
may verify that f is always bijective.

The CCNOT gate is an example of this: we take g(b1,b2) to be the logical AND of b1 and b2.
This gives us a gate that operates on three bits, which leaves the first two bits alone and flips
the third bit if the first two bits are both 1. The CCNOT gate is a universal classical gate: any
bijection f can be built out of CCNOT gates (analogous to how any boolean function can be
built out of NAND gates). As with Hadamard gates, we can apply a CCNOT gate to any three
bits in the state, and thus we have CCNOTijk gates, which applies the gate to bits i, j,k. This
is what CCNOT123 does:

CCNOT123 |b1b2b3b4 · · · bk〉 = |b1b2(b3 ⊕ (b1 ∧ b2))b4 · · · bk〉

That is, it flips the third bit if the first two bits are 1, and leaves the other bits alone.

4.3 Composition of gates

We input the matrix U into the quantum computer as a sequence of operations, e.g.:

U = H2 ·H3 ·CCNOT234 ·H2 ·H4 ·CCNOT123 ·H1 ·H2

We can graphically represent this circuit as follows:

H

CCNOTH H

CCNOT

H

H

H

The Hadamard gate and CCNOT gate together are universal, in the sense that any quantum
computation can be done using only these two gates.1

1 This more or less means that any unitary matrix can be approximated as product of Hadamard gates and CCNOT
gates. Since these gates all have real valued matrices, this is not exactly true, see [?] for the technical sense in which
these two gates are universal.

3

5 the deutsch–jozsa algorithm

We are given a boolean function g : {0, 1}n → {0, 1} with n inputs and 1 output. We are
promised that g is either constant or balanced (meaning that it is 0 on half of its inputs and 1 on
the other half). Our task is to determine whether it is constant or balanced. The function g is
assumed to be efficiently implementable using logic gates.

Classically, it seems that we cannot do better than testing g on 2n/2+ 1 inputs in the worst case:
if they are all the same, then g is constant, and if they are not all the same, then by assumption
g must be balanced.

The Deutsch–Jozsa algorithm [?, ?] is a quantum algorithm for this problem that operates on
n+ 1 bits and is given by:

U = H⊗n+1 ·Cf ·H⊗n+1

where

• H⊗n+1 = H1 ·H2 · · ·Hn ·Hn+1 applies a Hadamard gate to every bit.
• Cf is the classical gate defined in (??) and (??), that XORs the (n+ 1)-th bit with g(b1, · · · ,bn).

Running this algorithm on input 00 · · · 01 always produces the output 00 · · · 01 if g is constant,
and is guaranteed to give a different output if g is balanced (see below). Thus, if we can encode
g efficiently using gates, then a quantum computer can efficiently determine whether it is
constant or balanced.

5.1 Correctness of the algorithm

Let us first see what the operator H⊗n does on a general basis state |x〉, where x is a bit string
of length n. Since H creates a superposition of the two bit positions for each bit, we will get a
sum over all possible bit strings:

H⊗n |x〉 = 1
√
2
n

∑
y∈{0,1}n
(−1)σx,y |y〉

where (−1)σx,y is the sign of |y〉 in the sum. What is this sign? By the definition of the
Hadamard gate (??), we get a minus sign each each time the bits in both x and y are 1. Thus,
σx,y = the number of 1 bits in the bitwise AND x&y. For example, if x = (00 · · · 0) then σx,y = 0

and therefore H⊗n |00 · · · 0〉 = 1√
2
n

∑
y |y〉.

4

We calculate what our U does on |00 · · · 01〉:

U |00 · · · 01〉 = H⊗n+1 ·Cf ·H⊗n+1 |00 · · · 01〉 (perform H on the first n bits ↦→)

= H⊗n+1 ·Cf ·Hn+1
1
√
2
n

∑
x

|x1〉 (perform H on the last bit ↦→)

= H⊗n+1 ·Cf
1

√
2
n+1

∑
x

(
|x0〉 − |x1〉

)
(perform Cf ↦→)

= H⊗n+1
1

√
2
n+1

∑
x

(
|x(0 ⊕ g(x))〉 − |x(1 ⊕ g(x))〉

)
(rewrite ↦→)

= H⊗n+1
1

√
2
n+1

∑
x

(−1)g(x)
(
|x0〉 − |x1〉

)
(perform H on the last bit ↦→)

= H⊗n
1
√
2
n

∑
x

(−1)g(x) |x1〉 (perform H on the first n bits ↦→)

=
1

2n

∑
x

∑
y

(−1)g(x)+σx,y |y1〉 (rewrite ↦→)

=

∑
y

(∑
x

(−1)g(x)+σx,y

2n

)
|y1〉

To determine the probability of measuring |00 · · · 01〉, we square its coefficient in this sum:

p00···01 =

������ ∑
x∈{0,1}n

(−1)g(x)
2n

������
2

(since σx,y = 0, if x = (00 · · · 0))

• If g is constant: the terms sum to 1 or −1, so p00···01 = |±1|2 = 1.
• If g is balanced: half the terms in the sum are + 12n and half are − 12n , so p00···01 = 0.

Therefore, if g is constant, then we are certain to get the answer 00 · · · 01, and if g is balanced
then we are certain not to get this answer. Although the output may be random in the latter
case, we can still determine whether g is constant or balanced with certainty.

6 a quantum simulator

Here is a Python program that allows us to apply Hadamard gates and classical gates to a state
vector:

from math import sqrt

n = 5 # number of bits in our state

we represent bit strings as integers

def print_state(s):

print(" + ".join([f’{s[i]:.5f}|{bin(i)[2:].zfill(n)}>’

for i in range(len(s)) if s[i] != 0]))

gives the basis state |x>, where x is a string of 0’s and 1’s

def basis(x):

s = [0]*2**n

5

s[int(x,base=2)] = 1

return s

apply the classical gate C_f, where f is a bijective function on bit strings

def classical(s,f):

s2 = [0]*2**n

for x in range(2**n):

s2[f(x)] = s[x]

return s2

apply the Hadamard gate H_k, where k is the bit to apply the gate to

def hadamard(s,k):

bitk = 1 << k

s2 = [0]*2**n

for x in range(2**n):

sign = (-1)**((x >> k) & 1)

s2[x] = (s[x & ~bitk] + sign*s[x | bitk])/sqrt(2)

return s2

example

s = basis("10101")

print_state(s) # 1.00000|10101>

s = hadamard(s,1)

print_state(s) # 0.70711|10101> + 0.70711|10111>

s = classical(s, lambda x: ~x)

print_state(s) # 0.70711|01000> + 0.70711|01010>

s = hadamard(s,3)

print_state(s) # 0.50000|00000> + 0.50000|00010> + -0.50000|01000> + -0.50000|01010>

s = hadamard(s,1)

print_state(s) # 0.70711|00000> + -0.70711|01000>

Download here: https://julesjacobs.com/notes/quantum/qsim.py

7 quantum programming languages

A quantum programming language is a high level language for assembling quantum circuits.
These languages often include the ability to simulate a quantum circuit (which takes exponential
time in the worst case), and some allow you to take classical computation written using ordinary
code and turn it into a quantum circuit (e.g. using a large number of CCNOT gates). See
https://en.wikipedia.org/wiki/Quantum_programming for a list of quantum programming
languages and their distinguishing features.

acknowledgements . I thank Arjen Rouvoet for his suggestions that improved the clarity
and correctness of this note (all remaining errors were likely introduced afterwards), and
Dong-Ho Lee for introducing me to quantum computation and answering my questions.

6

https://julesjacobs.com/notes/quantum/qsim.py
https://en.wikipedia.org/wiki/Quantum_programming

	Quantum states
	Time evolution in quantum mechanics
	What a quantum computer is
	Quantum circuits
	The Hadamard gate
	Classical gates
	Composition of gates

	The Deutsch–Jozsa algorithm
	Correctness of the algorithm

	A quantum simulator
	Quantum programming languages

