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This is an introduction to these three well-known techniques for rewriting to normal
form, and how to use them to optimize regular expressions and compute β and η
normal forms of lambda terms. We will see that these techniques share the same
key idea, but differ in how binders are represented and how substitution is handled:

Hereditary substitution = smart constructors+AST substitution

Normalization by evaluation = smart constructors+HOAS substitution

The key idea is that the smart term constructors first check if a rewrite rule applies
to the term they are about to construct, and if so they construct the right hand
side of the rewrite rule instead. By constructing that new term using the smart
constructors, we get a mutually recursive set of functions that rewrite to normal
form. If we have rewrite rules that do substitution, then the substitution function
must also construct its new term using the smart constructors, which makes it part
of the mutual recursion.

The formulation of normalization by evaluation in this note is slightly simpler
than some conventional presentations, which (in my view) intertwine conversion to
and from HOAS with normalization itself.1
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1 introduction

Suppose we want to simplify regular expressions consisting of the following operations. The
symbol 0 represents the regex that doesn’t match anything, 1 represents the regex that only
matches the empty string, ‘c‘ represents a single character, (+) represents union, (·) represents
concatenation, and ∗ represents repetition:

r ∈ Re ::= 0 | 1 | ‘c‘ | r+ r | r · r | r∗,

We want to rewrite by repeatedly using the following equations from left to right:

r+ 0 = r
0+ r = r
r+ r = r

(r+ s) + t = r+ (s+ t)

r · 0 = 0
0 · r = 0
r · 1 = r
1 · r = r

(r · s) · t = r · (s · t)

0∗ = 1

1∗ = 1

(r∗)∗ = r∗

For example, (a · 0∗)∗∗ + 0 = a∗.

Simplifying regexes using those equations is useful for implementing regular expression
matching with Brzozowski derivatives [Brz64, ORT09]. The point isn’t this particular example;
rewriting expressions to normal form for a given set of equations is more broadly useful.

The naive way to do this is to take the regular expression r, and try to find some subexpression
of r where one of the left hand sides of the equations can be rewritten to the right hand side.
If we repeat this as much as possible, until no equation matches any subexpression, we have
rewritten the regex to normal form. The problem with this approach is that it is inefficient and
not even very easy to implement. At each step we have to search through r to find a place to
apply a rewrite rule.

A more systematic way to do this is to schedule the rewrites bottom up. For instance, if
r = r1 + r2 then we first recursively rewrite r1 and r2 to normal form. We then only need to
check if r1 + r2 itself is in normal form. If it is, then we’re done. If one of the left hand sides of
the equations match, then we apply the rewrite rule. We then start the whole normalization
process all over again, because after we’ve applied the rewrite rule there might be new
opportunities for further rewriting.

This is better, but still not great. Suppose r = (r1 + r2) + r3, and we’ve already rewritten r1, r2, r3
to normal form. Now the associativity rewrite rule wants to rewrite this to r1 + (r2 + r3). This
is a new regular expression, so maybe more rewrite rules match. However, we do know that
r1, r2, r3 themselves are still in normal form. So in order to rewrite r1 + (r2 + r3) to normal
form, we don’t need to recursively re-normalize r1, r2, r3. We only need to check if any rewrite
rule matches for the two newly created (+) expressions. We thus want to keep track of which
expressions are already in normal form, so that we never need to recurse into them again to
uselessly try and fail to rewrite them further. Note we do need to look into expressions that are
already in normal form: if r2 = r21 + r22 then further rewrites do apply to r2 + r3, even if r2
and r3 are in normal form. This may seem like it can get a little bit complicated, but in the
next section we will discuss a well known technique to do this easily and very efficiently.
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2 bottom-up rewriting with smart constructors

Let us first define a data type of regular expressions:

enum Re:

case Emp // 0

case Eps // 1

case Chr(c:Char) // ’c’

case Seq(a:Re, b:Re) // r · s
case Alt(a:Re, b:Re) // r + s

case Star(a:Re) // r*

2.1 Smart constructors

The key idea is to define smart constructors seq, alt, and star for the ordinary constructors Seq,
Alt, and Star. We want these smart constructors to satisfy the following property:

If we use a smart constructor on values that are in normal form, it must return a value in normal form.

Here’s the one for seq:

def seq(a:Re, b:Re):Re =

(a,b) match {

case (Re.Emp,_) => Re.Emp

case (_,Re.Emp) => Re.Emp

case (Re.Eps,x) => x

case (x,Re.Eps) => x

case (Re.Seq(x,y),b) => seq(x,seq(y,b))

case _ => Re.Seq(a,b)

}

We check if any of the rewrite rules for (·) match, and if so we construct the right hand side of
the rewrite rule instead. Importantly, we have to use the smart constructors to construct the right
hand side. That guarantees that the returned value is in normal form. If no equation matches
(last case), we can use the ordinary constructor Seq, because then we know that the it already is
in normal form.

Here are the smart constructors alt and star:

def alt(a:Re, b:Re):Re =

(a,b) match {

case (Re.Emp,x) => x

case (x,Re.Emp) => x

case (Re.Alt(x,y),b) => alt(x,alt(y,b))

case _ => if(a==b) a else Re.Alt(a,b)

}

def star(a:Re):Re =

a match {

case Re.Emp => Re.Eps

case Re.Eps => Re.Eps

case Re.Star(_) => a

case _ => Re.Star(a)

}
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2.2 Converting to normal form

To convert a regular expression to normal form, we simply "copy" it with the smart constructors.
Let’s call this idea smart copying: like a copy function, but calling the smart constructors instead.

def norm(a:Re):Re =

a match {

case Re.Emp => Re.Emp

case Re.Eps => Re.Eps

case Re.Chr(c) => Re.Chr(c)

case Re.Alt(a,b) => alt(nf(a),nf(b))

case Re.Seq(a,b) => seq(nf(a),nf(b))

case Re.Star(a) => star(nf(a))

}

val r = Re.Alt(Re.Star(Re.Star(Re.Seq(Re.Chr(’a’),Re.Star(Re.Emp)))),Re.Emp)

norm(r) // Star(Chr(’a’))

By the property that smart constructors return normal forms if you pass them normal forms,
this function will return a normal form. What’s more, this is very efficient: we only recurse
over the initial regular expression once, and we only ever allocate regular expressions that are in
normal form. We never allocate an intermediate value like (r1 + r2) + r3 to which a rewrite rule
applies; we rewrite it before even constructing it.

2.3 Handling commutativity

Suppose we also want to use commutativity r+ s = s+ r. This is nice, because then if we have
(r+ s) + r we can use commutativity and associativity to rewrite that to s+ (r+ r), so that the
cancellation rule r+ r = r can be used to simplify it. We can’t keep repeatedly rewriting using
commutativity, because that would result in an infinite loop. What we want is to bring equal
regexes next to each other, so that the cancellation rule applies.

To do this, we define an ordering (<) on regular expressions, and rewrite r+ s = s+ r only if
s < r. This will bring longer sequences r1 + r2 + · · · + rn into sorted order, so that adjacent
equal elements can be canceled. Any ordering will do. A convenient option is to sort them by
their hash code. That leads to the following smart constructor:

def alt1(a:Re, b:Re):Re =

(a,b) match {

case (Re.Emp,x) => x

case (x,Re.Emp) => x

case (Re.Alt(x,y),b) => alt1(x,alt1(y,b))

case (a,Re.Alt(x,y)) =>

if(a==x) b

else if(a.hashCode() < x.hashCode()) Re.Alt(a,b)

else alt1(x,alt1(a,y))

case _ =>

if(a==b) a

else if(a.hashCode() < b.hashCode()) Re.Alt(a,b)

else Re.Alt(b,a)

}

This smart constructor is able to do that optimization:

4



val a = Re.Chr(’a’)

val b = Re.Chr(’b’)

alt(a,alt(b,a)) // Alt(Chr(’a’), Alt(Chr(’b’), Chr(’a’)))

alt1(a,alt1(b,a)) // Alt(Chr(’b’), Chr(’a’))

2.4 Optimizing at parse time

As you can see in the previous example, an alternative to first constructing a regex and then
converting it to normal form, is to use the smart constructors to construct the initial regex in the
first place. The parser could call the smart constructors instead of the ordinary constructors.

This is what the JVM does when converting JVM bytecode to its sea-of-nodes intermediate
representation [CP95]. It speeds up the JIT compiler because simple local rewrite rules are
able to shrink the IR significantly, so the rest of the compiler has to wade though less code.
In fact, the local rewrite rules are so effective in combination with the sea of nodes IR that
you could potentially write a reasonably good compiler by just doing optimization with smart
constructors.

3 better normal form representations

The implementation of the smart constructor that handles commutativity is rather complicated.
We’re essentially implementing a very bad version of bubble sort. We even need separate cases
for an element in the middle of the list and an element at the end of the list.

A better way is to use a representation of regular expressions tailored to normal forms. We
represent n-ary sequential composition as a list. This builds associativity (r · s) · t = r · (s · t)
into the representation. We represent n-ary alternative with a set. This builds associativity
(r + s) + t = r + (s + t) and commutativity r + s = s + r and idempotence r + r = r into the
representation.

enum Re2:

case Chr(a:Char)

case Seq(rs:List[Re2])

case Alt(rs:Set[Re2])

case Star(r:Re2)

We no longer need the Eps and Emp classes for 0 and 1, because we can represent them as empty
alternative and sequence nodes.

val emp2 = Re2.Alt(Set())

val eps2 = Re2.Seq(List())

The smart constructors for Seq and Alt are significantly simpler with the Re2 representation:

def seq2(rs:List[Re2]):Re2 = {

val rs2 = rs.flatMap{case Re2.Seq(rs) => rs; case x => List(x)}

if(rs2.contains(emp2)) emp2

else if(rs2.size == 1) rs2.head

else Re2.Seq(rs2)

}
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def alt2(rs:Set[Re2]):Re2 = {

val rs2 = rs.flatMap{case Re2.Alt(rs) => rs; case x => Set(x)}

if(rs2.size == 1) rs2.head

else Re2.Alt(rs2)

}

The smart constructor for Star does not change much:

def star2(a:Re2):Re2 =

a match {

case Re2.Alt(rs) if rs.isEmpty => eps2

case Re2.Seq(rs) if rs.isEmpty => eps2

case Re2.Star(_) => a

case _ => Re2.Star(a)

}

We can define conversion functions from Re to Re2 and vice versa that put the regex in normal
form. Alternatively, we could also use the Re2 representation throughout and remove Re entirely,
but I show the conversion functions here for illustration. We use the name norm : Re → Re2

because normalization is now done by conversion to the tailored normal form representation:

def norm(r:Re):Re2 =

r match {

case Re.Eps => eps2

case Re.Emp => emp2

case Re.Chr(c) => Re2.Chr(c)

case Re.Alt(a,b) => alt2(Set(norm(a),norm(b)))

case Re.Seq(a,b) => seq2(List(norm(a),norm(b)))

case Re.Star(a) => star2(norm(a))

}

We use the name reify : Re2→ Re because this conversion reifies the normal form representation
back to the original syntax:

def reify(r:Re2):Re =

r match {

case Re2.Chr(c) => Re.Chr(c)

case Re2.Seq(rs) => fold1(rs.map(reify), Re.Eps, Re.Seq)

case Re2.Alt(rs) => fold1(rs.map(reify), Re.Eps, Re.Alt)

case Re2.Star(r) => Re.Star(reify(r))

}

Some examples:

val c = Re2.Chr(’c’)

val d = Re2.Chr(’d’)

val z = alt2(Set(c,d,emp2,eps2))

alt2(Set(z,z,c)) // Alt(Set(Chr(c), Chr(d), Seq(List())))

seq2(List(emp2, c, d)) // Alt(Set())

reify(z) // Alt(Eps,Alt(Chr(d),Chr(c)))
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4 hereditary substitution

While regexes are fun, simplification becomes more interesting when binders are involved,
such as with lambda calculus with λx.e and function application f x ≡ app(f, x):

e ∈ Tm ::= x | λx.e | app(e, e)

We want to simplify with respect to the β-rule that applies a lambda to an argument:

app((λx.e1), e2){ e1[x := e2]

We could start with a lambda term and keep applying this rule wherever it applies (and
choosing arbitrarily when it applies in multiple places), we’d like to do something like the
smart constructors we used for regexes.2 One method for doing that is called hereditary
substitution [KA10].

Hereditary substitution can be viewed as a smart constructor for app: whenever app(e1, e2)
sees that e1 = λx, e is a lambda term, it will do the substitution instead of constructing an app
syntax tree node.

To turn this idea into code, we will first need to decide how to represent lambda terms in our
program. We could represent variables x as strings "x", but this makes it quite difficult to write
a correct substitution function in a purely functional way. The difficulty is that we want to
apply the app rule under lambdas, so the terms we are substituting may have free variables
that need to be renamed to avoid name clashes. At first, you may think that giving all variables
in the initial lambda term unique names solves the name clash problem, but that isn’t the case:
because of substitution the terms get copied so the invariant that all names are unique gets
violated, and name clashes can still result.

Instead of string names, we’re going to use De Bruijn indices [Bru21]. We represent a variable
with a number that indicates how many λ nesting levels we need to traverse to find the λ that
the variable belongs to. If we have a term λx.λy.λz.x then the De Bruijn index of x will be
2, because we need to traverse over the λz and λy in order to find the λx. This way, we do
not have to use any variable names, and can simply write λx.λy.λz.x ≡ λ.λ.λ.2. The app nodes
have no effect on the De Bruijn indices. For instance, the term λ.λ.app(0, λ.app(0, 2)) means
λx.λy.app(y, λz.app(z, x)). The details of this encoding are not so important and I leave them to
the next subsection: the important part is that this allows us to write a substitution function
without much trouble.

We first define De Bruijn syntax tree nodes:

enum Db:

case Var(x:Int)

case Lam(a:Db)

case App(a:Db, b:Db)

We define a substitution function subst(e,f) that substitutes the term f(i) for each variable i in
e. This is called a parallel substitution because it substitutes terms for all variables simultaneously:

2 Applying the β-rule repeatedly may not terminate for all lambda terms, such as for the term
app((λx.app(x, x)), λx.app(x, x)). We will assume that the lambda term that we want to simplify satisfies strong
normalization, which means that any order of applying the β-rule will eventually terminate. This is guaranteed if
the term type-checks in the simply typed lambda calculus, for instance.
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def subst(a:Db, f:Int => Db):Db =

a match {

case Db.Var(n) => f(n)

case Db.Lam(a) => Db.Lam(subst(a,liftS(f))) // we will get to the liftS function later

case Db.App(a,b) => app(subst(a,f),subst(b,f))

}

Notice that the subst function is calling the smart constructor app, which we still need to define!

In terms of the parallel substitution function subst(e,f) we can define subst0(e,v) that substi-
tutes only the first variable 0 ↦→ v in e. Now that variable 0 is gone, we have to decrement all
other variable indices:

def subst0(e:Db, v:Db):Db = subst(e, (n) => if(n==0) v else Db.Var(n-1))

With this substitution function at hand, we can finally define the smart constructor app:

def app(a:Db, b:Db):Db =

a match {

case Db.Lam(e) => subst1(e, b)

case _ => Db.App(a,b)

}

The mutual recursion between subst and app ensures that no app(e1, e2) term gets created
where e1 is a lambda.

We can "smart copy" a lambda term to β-normalize it:

def norm(a:Db):Db =

a match {

case Db.Var(n) => Db.Var(n)

case Db.Lam(a) => Db.Lam(norm(a))

case Db.App(a,b) => app(norm(a),norm(b))

}

That’s all there’s to it!

4.1 De Bruijn indices

The liftS function lifts a substitution over a lambda. To implement this, we first define a
renaming function rename(e,f) that renames all variables i to f(i) in e:

def liftR(f : Int => Int): Int => Int =

(n) => if(n==0) 0 else f(n-1) + 1

def rename(a:Db, f:Int => Int):Db =

a match {

case Db.Var(n) => Db.Var(f(n))

case Db.Lam(a) => Db.Lam(rename(a,liftR(f)))

case Db.App(a,b) => Db.App(rename(a,f),rename(b,f))

}

Using these, we can implement shift and liftS:

def shift(e:Db, f:Int => Db):Int => Db =

(n) => if(n==0) e else f(n-1)
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def liftS(f : Int => Db):Int => Db =

shift(Db.Var(0), k => rename(f(k), (_+1)))

The function Var is the identity substitution, so shift(e,Var) substitutes 0 ↦→ e and decrements
all other variables by 1, so we can now define subst0 more concisely as:

def subst0(e:Db, v:Db):Db = subst(e, shift(v,Db.Var))

5 untyped normalization by evaluation

A more funky representation for lambda terms is higher order abstract syntax (HOAS) [PE88]. We
represent a lambda abstraction as its substitution function: the lambda term λx.e gets represented
as a Scala function that does f(v) = e[x ↦→ v]. The return value is another lambda term, that is
again represented in this HOAS representation. We call the data type for lambda terms in this
representation Hs:

enum Hs:

case Lam(f:Hs => Hs)

case App(a:Hs, b:Hs)

Here’s an example term λx.λy.app(y, λz.app(x, z)):
Hs.Lam(x => Hs.Lam(y => Hs.App(y, Hs.Lam(z => Hs.App(x,z)))))

The smart constructor app is now easy to write:

def app(a:Hs, b:Hs):Hs =

a match {

case Hs.Lam(f) => f(b)

case _ => Hs.App(a,b)

}

The issue is that this doesn’t mutually recursively call itself, like the hereditary substitution
did. We can fix that by using app instead of App in the original lambda terms we construct:

Hs.Lam(x => Hs.Lam(y => app(y, Hs.Lam(z => app(x,z)))))

If we do this consistently, then the only place in our program where the constructor App is
called is in app, and there we have made sure that the the first argument isn’t a lambda, so
we’re guaranteed to get a β normal form.

Instead of writing our lambda terms using app in the first place, we can write a smart copy
function that does it for us:

def norm(a:Hs):Hs =

a match {

case Hs.Lam(f) => Hs.Lam(x => norm(f(x)))

case Hs.App(a,b) => app(norm(a),norm(b))

}

This is called normalization by evaluation [BS91].3

3 Conventionally, normalization by evaluation is intertwined with conversion to and from HOAS. I find that confusing,
because it intertwines separate concerns. So I opted to redefine "normalization by evaluation" to mean what the
norm function does, namely HOAS→ HOAS normalization, and handle conversion to and from HOAS separately.
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5.1 From ordinary lambda terms to HOAS and back

This may all seem incredibly weird, so we’re going to write functions that convert from ordinary
lambda terms (where variables are represented as strings) to Hs terms and back:

enum Tm:

case Var(x:String)

case Lam(x:String, a:Tm)

case App(a:Tm, b:Tm)

Conversion from Tm to Hs:

def eval(env:Map[String,Hs], a:Tm):Hs =

a match {

case Tm.Var(x) => env(x)

case Tm.Lam(x, a) => Hs.Lam(v => eval(env + (x → v), a))

case Tm.App(a,b) => Hs.App(eval(env,a),eval(env,b))

}

def toHs(a:Tm):Hs = eval(Map(),a)

In order to convert from Hs to Tm, we have to extend the Hs data type with one additional
constructor, that injects Tm terms into the Hs data type:

case class ResTm(a:Tm) extends Hs

We’re also going to need a fresh variable name generation facility, because Hs values have no
variable names whereas Tm values do:

var n = 0

def fresh() = { n += 1; s"x$n" }

We can now convert Hs values to Tm values:

def freshLam(f:Tm => Tm):Tm = { val x = fresh(); Tm.Lam(x, f(Tm.Var(x))) }

def toTm(a:Hs):Tm =

a match {

case Hs.ResTm(a) => a

case Hs.Lam(f) => freshLam(x => toTm(f(Hs.ResTm(x))))

case Hs.App(a,b) => Tm.App(toTm(a),toTm(b))

}

Here’s an example:

val zero = Hs.Lam(f => Hs.Lam(x => x))

val succ = Hs.Lam(n => Hs.Lam(f => Hs.Lam(z => Hs.App(Hs.App(n,f),Hs.App(f,z)))))

val one = Hs.App(succ,zero)

val two = Hs.App(succ,one)

toTm(two) /* App(Lam(x1,Lam(x2,Lam(x3,App(App(Var(x1),Var(x2)),App(Var(x2),Var(x3)))))),

App(Lam(x4,Lam(x5,Lam(x6,App(App(Var(x4),Var(x5)),

App(Var(x5),Var(x6)))))),

Lam(x7,Lam(x8,Var(x8))))) */

toTm(norm(two)) // Lam(x9,Lam(x10,App(Var(x9),App(Var(x9),Var(x10)))))
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5.2 Folding HOAS & finally tagless

The toTm : Hs→ Tm and norm : Hs→ Hs functions are somewhat similar. We can factor out the
pattern by defining a fold function on Hs, with which we can write functions Hs→ T for any T.
The fold function takes smart constructors app : T × T→ T and lam : (T→ T)→ T as arguments,
and copies the Hs term with them to obtain a value of type T. In order to write fold, we need to
extend Hs with a new constructor, as we did before:

case class Res(a:Object) extends Hs // hack for fold

We can then write fold:

def fold[T](a:Hs, app : (T,T) => T, lam : (T => T) => T) : T =

a match {

case Hs.Res(x) => x.asInstanceOf[T]

case Hs.Lam(f) => lam(t => fold(f(Hs.Res(t.asInstanceOf[Object])), app, lam))

case Hs.App(a,b) => app(fold(a, app, lam), fold(b, app, lam))

}

As you can see, this a bit of a hacky approach that requires unsafe casts. It has the advantage
of being fairly simple and require minimal changes to what we already have. See [WW03] for
a non-hacky approach.

We can use fold to write toTm and norm as one-liners:

def toTm(a:Hs):Tm = fold[Tm](a, Tm.App, freshLam)

def norm(a:Hs):Hs = fold[Hs](a, app, Hs.Lam)

An alternative is to represent a:Hs values as their folding function (app,lam) => fold(a, app, lam).
This approach is called finally tagless [CKS07] and it works very nicely. I would highly
recommend checking out that paper.

6 typed normalization by evaluation

Type directed normalization by evaluation can be used to put values in η expanded form.4 In
η expanded form we are only allowed to use non-lambda terms f : A→ B of function type as
the first argument of app. To use f in any other place we must instead write f ≡ λx.app(f, x).
We need type information because the types determine how much we η expand:

• Expanding λx.x at type A→ A gives λx.x
• Expanding λx.x at type (A→ A) → (A→ A) gives λf.λx.app(f, x)

We start by defining a data type for types:

enum Ty:

case Base

case Arrow(a:Ty, b:Ty)

Instead of norm : Hs→ Hs, we’re going to use a tailored representation for normal forms, like we
did for regular expressions. We’re going to have norm : Hs→ Sem and reify : Sem→ Hs, where
Sem is the "semantic domain" tailored to representing normal forms.

4 The relevance of η expansion appears to be primarily theoretical. In practice we usually only need to decide
η equivalence of two lambda terms, for instance when implementing a type checker for dependent type theory.
Deciding η equivalence can be done on untyped terms by recursion on the term, and η expanding lazily if one side
is a lambda and the other side is not. A similar trick works for non-empty products / records. For η equivalence of
some other types (e.g., the unit type), one does seem to need type information even for η equivalence.
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In fact, the situation is a little bit more interesting. The semantic domain is going to depend on
the type of values we’re representing: the domain SemA is going to be indexed by the type A
in the following way:

SemBase := Hs

SemA→B := SemA → SemB

In other words, the semantic domain of base types is HOAS terms Hs, but the semantic domain
for function types is going to be Scala functions between the respective semantic domains.
Unfortunately, we are not using Agda, and my Scala knowledge is insufficient to know if it
is possible to do this in Scala. In any case I’d like to keep the code here simple, and make it
possible to translate into other languages without Agda’s (or Scala’s) fancy type system. So
we’re going to smush the semantic domain together into a single type, and we’re going to put
the dependent types in comments:

enum Sem:

case Syn(a:Hs) // Sem_Base = syntactic terms Hs

case Lam(f:Sem => Sem) // Sem_Arrow(A,B) = Sem_A → Sem_B

Although the Sem domain doesn’t have a case for App, we can write a smart constructor for it:

// Smart constructor

// appS : Sem_{A → B} → Sem_A → Sem_B

def appS(a:Sem, b:Sem):Sem =

a match {

case Sem.Lam(f) => f(b)

// Types guarantee that we don’t need any other case!

}

Because we assume that a is of function type, we can ignore the Syn case. We’ll need to be
careful to only pass a’s of function type into appS, of course.

We can write norm : Hs→ Sem as a fold using this smart constructor:

// norm : Hs_t → Sem_t

def norm(x:Hs):Sem = fold[Sem](x, appS, Sem.Lam)

The more complicated direction turns out to be reifying Sem values back to syntactic Hs values:

// reify : Sem_t → Hs_t

def reify(t:Ty, x:Sem):Hs =

(t,x) match {

case (Ty.Arrow(a,b), Sem.Lam(f)) => Hs.Lam(y => reify(b, f(reflect(a, y))))

case (Ty.Base, Sem.Syn(y)) => y

}

// does eta expansion

// reflect : Hs_t → Sem_t

def reflect(t:Ty, x:Hs):Sem =

t match {

case Ty.Arrow(a,b) => Sem.Lam(y => reflect(b, Hs.App(x, reify(a,y))))

case Ty.Base => Sem.Syn(x)

}

Because the Sem domain only contains function values for function types, we are forced to do
η-expansion: there is simply no way to represent a plain variable f in the semantic domain at
function type, we must write λx.app(f, x).
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By normalising and then reifying, we can do typed normalization by evaluation from HOAS
terms to HOAS terms:

// nbe : Hs_t → Hs_t

def nbe(t:Ty, e:Hs) = reify(t, norm(e))

Using the conversion functions we can also get normalization by evaluation on ordinary terms:

// nbeT : Tm_t → Tm_t

def nbeT(t:Ty, e:Tm) = toTm(nbe(t,toHs(e)))

Here’s an example that normalizes SK combinators [NbE21]:

val k = Hs.Lam(x => Hs.Lam(y => x))

val s = Hs.Lam(x => Hs.Lam(y => Hs.Lam(z => Hs.App(Hs.App(x,z), Hs.App(y,z)))))

val skk = Hs.App(Hs.App(s,k),k)

toTm(skk) /* App(App(Lam(x11,Lam(x12,Lam(x13,

App(App(Var(x11),Var(x13)),App(Var(x12),Var(x13)))))),

Lam(x14,Lam(x15,Var(x14)))), Lam(x16,Lam(x17,Var(x16)))) */

val tb = Ty.Arrow(Ty.Base,Ty.Base)

// normalizes to the identify function

toTm(nbe(tb, skk)) // Lam(x18,Var(x18))

val tbb = Ty.Arrow(tb, tb)

// at higher type, it eta expands the identity function

toTm(nbe(tbb, skk)) // Lam(x19,Lam(x20,App(Var(x19),Var(x20))))

I would highly recommend looking at Sam Lindley’s slide deck [Lin16] if you want to learn
more about typed normalization by evaluation. It is excellent and explains simple normalization
by evaluation very clearly, but also goes much beyond this.

7 summary

We saw that the essence of these techniques is the smart constructor that ensures that its return
value is in normal form. On top of those, we can build a smart copy function norm that copies a
value but constructs the copy using smart constructors, in order to rewrite it to normal form.
The smart copy function is the same as folding the data type with the smart constructors. The
smart constructors do not have to use the original syntactic representation: we can use a tailored
normal form representation as we did with regular expressions with Seq represented as a list
and Alt as as set. In this case, the smart copy function has the syntactic representation type
as input and the normal form representation type as output. We can reify the normal form
representation back into the syntactic representation.

Hereditary substitution and untyped normalization by evaluation are both based on smart con-
structors for app, but use a different representation and mechanism to compute the substitution.
Typed normalization by evaluation uses a separate semantic domain to tailored to representing
normal forms. This semantic domain is indexed by the type of the expressions. We can still
separate the AST↔ HOAS conversion and HOAS↔ Normal Form transformation, which
makes each individual piece a bit simpler.
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