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Abstract. Symmetric polynomials of the roots of a polynomial can be written as polynomials of the
coefficients, and by applying this theorem to the characteristic polynomial we can write a symmetric
polynomial of the eigenvalues ai of an n× n matrix A as a polynomial of the entries of the matrix.
We give a magic formula for this: symbolically substitute a 7→ A in the symmetric polynomial and
replace multiplication by det. For instance, for a 2× 2 matrix A with eigenvalues a1, a2,

a1a
2
2 + a21a2 = det(A1, A

2
2) + det(A2

1, A2)

where Ak
i is the i-th column of Ak and det(v1, . . . , vn) is the determinant of the matrix with columns

v1, . . . , vn. One may also take negative powers, allowing us to calculate:

a1a
−1
2 + a−1

1 a2 = det(A1, A
−1
2 ) + det(A−1

1 , A2)

The magic method also works for multivariate symmetric polynomials of the eigenvalues of a set of
commuting matrices, e.g. for 2× 2 matrices A and B with eigenvalues a1, a2 and b1, b2,

a1b1a
2
2 + a21a2b2 = det(AB1, A

2
2) + det(A2

1, AB2)

1. Introduction

Let A be an n× n matrix with eigenvalues a1, . . . , an. It is well known that

a1 + a2 + · · ·+ an = tr(A) = A11 +A22 + · · ·+Ann

a1a2 · · · an = det(A) =
∑
σ∈Sn

(−1)σA1,σ(1)A2,σ(2) · · ·An,σ(n)

By applying the fundamental theorem of symmetric polynomials to the characteristic polynomial of A,
we find that there must be such an equation between any symmetric polynomial in the eigenvalues of
A and some polynomial in the entries of A. We give an explicit formula for this polynomial in terms
of determinants, which generalises the equations above to any symmetric polynomial:∑

i∈Nn
pia

i1
1 · · · ainn =

∑
i∈Nn

pi det(A
i1
1 , . . . , A

in
n )

This equation holds when the left hand side is a symmetric polynomial. That is, the coefficients
pi = p(i1,...,in) must satisfy p(iσ(1),...,iσ(n)) = p(i1,...,in) for all permutations σ. At first, this equation
may be surprising, since eigenvalues on the left hand side are independent of the choice of basis,
whereas taking k-th columns of a matrix on the right hand side is clearly basis dependent. Indeed,
each term pi det(A

i1
1 , . . . , A

in
n ) is on its own not basis independent, only the whole sum is, and only if

1
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the pi are coefficients of a symmetric polynomial. More generally,∑
i∈Nn

pi det(A
(i1)
1 , . . . , A(in)

n ) (1)

is basis independent for any family of matrices A(j), not necessarily powers Aj of a single matrix.
That is, if we substitue A(j) 7→ S−1A(j)S for some invertible matrix S, its value does not change.
Furthermore, if the A(j) commute, we have the identity∑

i∈Nn
pia

(i1)
1 · · · a(in)n =

∑
i∈Nn

pi det(A
(i1)
1 , . . . , A(in)

n )

where a(j)k is the k-th eigenvalue of A(j).
Our strategy to prove this is to define a quantity that is basis independent because its definition

makes no reference to a basis, and then show that it is equal to (1). Once we have shown that (1) is
invariant under basis transformations, we pick a basis in which the determinants become products of
eigenvalues, which is possible if the A(j) commute.

By applying this identity to particular families of matrices, we get the fundamental theorem of
symmetric polynomials as a corollary, and we are able to deduce various equations between eigenvalues
and determinants, such as those in the abstract.

2. Preliminaries

The proof is based on multilinear antisymmetric functions [1].

Definition. A function f : V n → R is

• Multilinear if f is linear in each argument, i.e. vk 7→ f(v1, . . . , vk, . . . , vn) is linear, with vi ∈ V .
• Antisymmetric if applying a permutation σ ∈ Sn to its arguments multiplies it by the sign of

the permutation, i.e. f(vσ(1), . . . , vσ(n)) = (−1)σf(v1, . . . , vn), with vi ∈ V .

Multilinear antisymmetric functions form a vector space.

Definition. Let
∧n

V ∗ ⊂ V n → R be the space of multilinear antisymmetric functions.

The only property of
∧n

V ∗ we will need is that dim(
∧n

V ∗) = 1 if n = dim(V ). In fact, in general
dim(

∧n
V ∗) =

(
dim(V )
n

)
[1]. Since it is the basis of our main theorem, we will give a proof here.

Lemma. dim(
∧n

V ∗) = 1 if dim(V ) = n.

Proof. Let f ∈
∧n

V ∗ and v1, . . . , vn ∈ V . Take a basis e1, . . . , en for V . Writing the vi in terms
of the basis, we have coefficients aij ∈ R for i, j ∈ {1 . . . n} such that vi =

∑
j aijej . The proof

proceeds by expanding f(v1, . . . , vn) by multilinearity, and then using the fact that f is zero whenever
there is a duplicate argument, because applying a permutation that swaps those two positions gives
f(. . . , w, . . . , w, . . . ) = −f(. . . , w, . . . , w, . . . ), which implies f(. . . , w, . . . , w, . . . ) = 0. This allows us
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to convert the sum over any pattern of indexing into a sum over permutations.

f(v1, . . . , vn) = f(

n∑
i1=1

a1i1ei1 , . . . ,

n∑
in=1

a1inein)

=

n∑
i1=1

· · ·
n∑

in=1

a1i1 . . . aninf(ei1 , . . . , ein)

=
∑

i∈{1...n}→{1...n}

a1i(1) . . . ani(n)f(ei(1), . . . , ei(n))

=
∑
σ∈Sn

a1σ(1) . . . anσ(n)f(eσ(1), . . . , eσ(n))

=
∑
σ∈Sn

(−1)σa1σ(1) . . . anσ(n)f(e1, . . . , ee)

= det(a)f(e1, . . . , en)

Therefore, the value f ∈
∧n

V ∗ is entirely determined by its value on f(e1, . . . , en), and conversely,
any value chosen for f(e1, . . . , en) determines a multilinear antisymmetric function f ∈

∧n
V ∗ via the

equation above, so the space is one dimensional. �

3. Proof

Let I be some index set. We say that pi ∈ R for i ∈ In are symmetric coefficients if only finitely
many pi are nonzero, and pi◦σ = pi for all i ∈ In and permutations σ ∈ Sn. Let ~A(j) : V → V for j ∈ I
be a family of linear maps on a vector space V of dimension n.

Example. A polynomial p(x1, . . . , xn) on n variables can be written as a sum of monomials

p(x1, . . . , xn) =
∑
i∈Nn

pix
ii
1 · · ·xinn

where pi = p(i1,i2,...,in) is the coefficient of xi11 x
i2
2 . . . x

in
n . If p is a symmetric polynomial, then pi

are symmetric coefficients with index set I = N. For instance, if

p(x1, x2, x3) = x1 + x2 + x3 = x11x
0
2x

0
3 + x01x

1
2x

0
3 + x01x

0
2x

1
3

then pi = 1 for i = (1, 0, 0), (0, 1, 0), (0, 0, 1) and pi = 0 otherwise. Note that pi◦σ = pi for all
permutations σ ∈ S3.

We now define a linear map p( ~A) :
∧n

V ∗ →
∧n

V ∗ in terms of the matrices ~A(j) and symmetric
coefficients pi. The key observation is that a linear map from a one-dimensional vector space to itself
is just multiplication by a scalar, so we are in effect defining a scalar here. We shall soon see that this
scalar is precisely (1).

Definition 1. If pi are symmetric coefficients, we define p( ~A) :
∧n

V ∗ →
∧n

V ∗ by

p( ~A)f(v1, . . . , vn) =
∑
i∈In

pif(A
(i1)v1, . . . , A

(in)vn)
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This does indeed preserve antisymmetry, by change of summation variable i = j ◦ σ, and using
pj◦σ = pj :

p( ~A)f(vσ(1), . . . , vσ(n)) =
∑
i∈In

pif(A
(i1)vσ(1), . . . , A

(in)vσ(n))

=
∑
j∈In

pj◦σf(A
(jσ(1))vσ(1), . . . , A

(jσ(n))vσ(n))

=
∑
j∈In

pj(−1)σf(A(j1)v1, . . . , A
(jn)vn)

= (−1)σp( ~A)f(v1, . . . , vn)

Example. Given a single matrix A ∈ R3×3 and index set I = N, we can pick ~A(j) = Aj to be the
powers of that matrix. For the symmetric coefficients pi from the running example, we have

p( ~A)f(v1, v2, v3) = f(A1v1, A
0v2, A

0v3) + f(A0v1, A
1v2, A

0v3) + f(A0v1, A
0v2, A

1v3)

= f(Av1, Iv2, Iv3) + f(Iv1, Av2, Iv3) + f(Iv1, Iv2, Av3)

= f(Av1, v2, v3) + f(v1, Av2, v3) + f(v1, v2, Av3)

We use the notation [p( ~A)] ∈ R for the scalar corresponding to p( ~A) ∈ End(
∧n

V ∗), so that
p( ~A)f = [p( ~A)]f for all f ∈

∧n
V ∗. Since p( ~A) has been defined in terms of the A(j), the scalar

[p( ~A)] ∈ R is a function of the maps A(j) : V → V . Since we have not used the choice of a basis for V
to define p( ~A), the scalar [p( ~A)] is manifestly invariant under change of basis.

Pick a basis B : Rn → V for V (with basis vectors bi = Bei, where ei ∈ Rn is the standard basis).
We have matrix representations M (j) = B−1A(j)B ∈ Rn×n for the A(j) : V → V , and we wish to
calculate [p( ~A)] ∈ R explicitly terms of the entries of M (j) ∈ Rn×n.

Theorem 2. [p( ~A)] =
∑
i∈In pi det(M

(i1)
1 , . . . ,M

(in)
n )

Example. For the running example, and B = I,

[p( ~A)] = det(A1, I2, I3) + det(I1, A2, I3) + det(I1, I2, A3) = A11 +A22 +A33

Proof. Since p( ~A) is multiplication by a scalar [p( ~A)],

p( ~A)f(v1, . . . , vn) = [p( ~A)] · f(v1, . . . , vn)
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for all f ∈
∧n

V ∗ and vectors (v1, . . . , vn). Taking f(w1, . . . , wn) = det(B−1w1, . . . , B
−1wn) and

(v1, . . . , vn) = (Be1, . . . , Ben) to be the basis vectors, on the right hand side

f(v1, . . . , vn) = det(B−1Be1, . . . , B
−1Ben) = det(e1, . . . , en) = 1

and on the left hand side

p( ~A)f(v1, . . . , vn) =
∑
i∈In

pi det(B
−1A(i1)Be1, . . . , B

−1A(in)Ben) =
∑
i∈In

pi det(M
(i1)
1 , . . . ,M (in)

n )

giving [p( ~A)] =
∑
i∈In pi det(M

(i1)
1 , . . . ,M

(in)
n ). �

This shows that the value of [p( ~A)] =
∑
i∈In pi det(M

(i1)
1 , . . . ,M

(in)
n ) does not depend on the basis,

since the left hand side is defined without reference to the basis. By picking a basis in which the A(j)

are all upper triangular, we can relate [p( ~A)] to the eigenvalues of the A(j).

Theorem 3. If the A(j) commute, then [p( ~A)] =
∑
i∈In pia

(i1)
1 · · · a(in)n , where a(j)k are the eigenvalues

of A(j).

Example. For the running example, suppose we have a basis in which A is upper triangular (e.g.
the Jordan basis), then

[p( ~A)] = det(A1, I2, I3) + det(I1, A2, I3) + det(I1, I2, A3) = a1 + a2 + a3

where a1, a2, a3 are the eigenvalues of A.

Proof. Commuting matrices have a basis in which they are simultaneously upper triangular, by Schur
decomposition [2]. The diagonal of those upper triangular matrices M (j) will contain the eigenvalues
a
(j)
k . In this case, det(M (i1)

1 , . . . ,M
(in)
n ) is the determinant of an upper triangular matrix, with eigen-

values a(ik)k on the diagonal. Hence det(M
(i1)
1 , . . . ,M

(in)
n ) = a

(i1)
1 · · · a(in)n , and substituting this into

theorem (2) gives the eigenvalue formula for p( ~A). �

The condition that the A(j) commute is not a necessary condition, because there are upper triangular
matrices that do not commute.

4. Corollaries

By combining theorems (2) and (3) we can justify the magic formula for converting symmetric
expressions involving eigenvalues into symmetric expressions involving determinants. We first show this
by example: let A,B be commuting 3× 3 matrices with eigenvalues a1, a2, a3 and b1, b2, b3. Formally,
we take the index set I = {A,B} in the theorems. Next, we choose symmetric coefficients pi for i ∈ I3;
we must choose values for pAAA, pAAB , pABA, . . . , pBBB that are symmetric under permutations of the
indices. We choose pAAB = pABA = pBAA = 1 and the rest 0. The theorems (2) and (3) give us the
equation

a1a2b3 + a1b2a3 + b1a2a3 = det(A1, A2, B3) + det(A1, B2, A3) + det(B1, A2, A3)

We can now proceed to pick the matrices A,B in this equation, as long as they commute. For instance,
given a matrix C, we could pick A = C3 and B = C−1. Or, given commuting matrices C,D, we could
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pick A = C2 + D and B = CD. Or we could pick A = (C + D)−1 and B = exp(CD). We thus
obtain various relations between eigenvalues and determinants by substituting, e.g. A = (C +D)−1,
B = exp(CD), and ai = (ci + di)

−1, bi = exp(cidi) into the equation.
Rather than trying to capture this general method in a theorem, we present a few special cases.

Corollary 4. Let q(b1, . . . , bn) =
∑
i∈Nn pib

i1
1 . . . b

in
n be a symmetric polynomial in the eigenvalues of

an n× n matrix B, then q(b1, . . . , bn) =
∑
i∈Nn pi det(B

i1
1 , . . . , B

in
n ).

Proof. Apply theorems (2) and (3) with index set I = N and matrices A(j) = Bj . �

Corollary 5. Let q(x) =
∑n
k=0 akx

k be a polynomial with roots rk. Then a symmetric polynomial in
the roots rk can be written as a polynomial in the coefficients ak.

Proof. Apply the previous corollary with B being the companion matrix of q. The eigenvalues of B are
the rk. The entries of the companion matrix are all 0, or 1, or ak, so det(Bi11 , . . . , B

in
n ) is a polynomial

in the ak. �

A symmetric polynomial q can be seen as a function of a vector x ∈ Rn satisfying q(Px) = q(x) for
permutation matrices P .

Definition 6. A multivariate symmetric polynomial q(X) is a polynomial function of the entries of a
matrix X ∈ Rn×m satisfying q(PX) = q(X) for permutation matrices P .

The permutation P permutes the rows of X, but keeps each row together. A symmetric polynomial
is the special case m = 1, when each row consists of a single entry.

Corollary 7. Let B(j) for j ∈ {1, . . . ,m} be commuting matrices with eigenvalues b(j)i , and define
Xij = b

(j)
i to be the matrix of eigenvalues. Then a multivariate symmetric polynomial q(X) can be

written as a polynomial in the entries of the B(j).

Proof. Take I = Nm and A(g) = (B(1))g1 · · · (B(m))gm in theorems (2) and (3). �

5. Footnote

The same definition (1) works for p( ~A) :
∧k

W ∗ →
∧k

V ∗ also when W 6= V and k 6= n. We
can view p( ~A)f as a generalised pullback of f along a list of maps A(j) : V → W . The ordinary
pullback A∗ :

∧k
W ∗ →

∧k
V ∗ is the special case of a single map A : V → W . We have, in general

p(X ~AY ) = Y ∗p( ~A)X∗, where X ~AY is simultaneous conjugation (X ~AY )(j) = XA(j)Y . This gives
us a slightly stronger version of theorem (2): if k = dim(V ) = dim(W ), then X∗ = det(X) and
Y ∗ = det(Y ), so we see that if we multiply the M (j) on the left by X and on the right by Y , the value
of [p( ~A)] gets multiplied by det(X) det(Y ). Theorem (2) tells us that the value does not change if we
do a basis transformation, but here we get information about the case X 6= Y −1. It is also possible to
generalise the proof of theorem (2) directly.

6. Todo

The det(A
(i1)
1 , . . . , A

(in)
n ) puts together columns of different matrices but still manages to be basis

invariant if the sum is symmetric. We can also put together rows of matrices. We can simultaneously



A MAGIC DETERMINANT FORMULA FOR SYMMETRIC POLYNOMIALS OF EIGENVALUES 7

do this for rows and columns. What’s the most general way we can stick matrices together while still
being basis invariant?

Can we give a general condition on a polynomial of a matrix tuple being an invariant? Maybe
q(P−1AP ) = q(A) for permutation matrices P implies the same statement for general matrices P
provided q is in some sense multilinear? Analogous to the similar propety for multilinear antisymmetric
functions, we say that q( ~A) is multilinear in the vector ~A in the usual sense of vector addition (but
now with matrix components).
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