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The Automata Zoo
Deterministic finite automata, tree automata, (labeled)

transition systems, weighted and probabilistic automata,
Markov decision processes, ...
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F-coalgebra
a unifying theory of automata and strong bisimilarity

This Work
a fast and general algorithm for minimizing automata
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What’s an F-coalgebra?

3 / 10



What’s an F-coalgebra?

3 / 10



What’s an F-coalgebra?

3 / 10



Finite coalgebras unify automata
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DFA

Transition system

C → {F,T}× C × C

C → P(C)

Labeled transition system Markov Decision Process
C → P(A × C) C → P(D(C))
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Minimizing a DFA
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▶ Set all the state numbers to 1.
▶ Pick equivalence class

▶ Compute missing signatures.
▶ Assign new state numbers &

Remove signatures from
predecessors of changed
states.

▶ Iterate until all states have a
signature.
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Minimizing a transition system
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What we need from the automaton
▶ Ability to compute signatures
▶ Ability to determine predecessors

Complexity
▶ How many times does a state’s number change?

▶ at most O(log n) times, if we use the old state number for
largest new block

▶ How many times does a signature get computed?
▶ at most O(log n) times per edge

▶ At most O(m log n) signature computations
▶ Total complexity: usually O(km log n)

▶ What about the complexity of bookkeeping?
▶ See paper for n-way partition refinement data structure
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Comparison
Boa Our algorithm

CoPaR Asymptotically more efficient
(O(m log n) signatures vs O(m log n))
Applicable to zippable functors

DCPR Distributed coalgebraic algorithm
Same generality as us
Quadratic complexity

mCRL2 Specialized C++ algorithm suite
for labeled transition systems

C → P(A × C)

Several LTS minimization algorithms
from literature (’90, ’03, ’17, ’19)
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benchmark time (s) memory (MB)

type n CoPaR DCPR Boa DCPR Boa

fms
1639440 232 84 1.12 514×32 196
4459455 – 406 4.47 1690×32 582

wlan
607727 105 855 0.28 147×32 42

1632799 – 2960 0.79 379×32 93

wta(W)
152107 566 79 0.74 642×32 83
944250 – 675 11.96 6786×32 1228

wta(Z)
156913 438 82 0.48 677×32 92

1007990 – 645 16.75 5644×32 1325

wta(2)
154863 449 160 0.81 621×32 79

1300000 – 1377 23.35 7092×32 1647
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What is the cost of generality?

benchmark time (s) memory (MB)

type n mCRL2 Boa mCRL2 Boa

cwi
2416632 13.9 1.4 1780 249
7838608 214.2 15.8 5777 814

33949609 282.2 31.5 16615 2776

vasy
6020550 33.8 3.1 2124 520

11026932 51.6 6.1 2768 619
12323703 56.9 7.0 3103 734

For mCRL2, we pick its best algorithm and its self-reported time.
For Boa, we report wall-clock time.
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