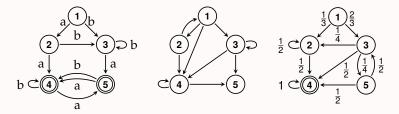
Fast Coalgebraic Bisimilarity Minimization

Jules Jacobs Radboud University Thorsten Wißmann Radboud University

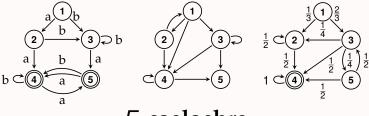
The Automata Zoo

Deterministic finite automata, tree automata, (labeled) transition systems, weighted and probabilistic automata, Markov decision processes, ...



The Automata Zoo

Deterministic finite automata, tree automata, (labeled) transition systems, weighted and probabilistic automata, Markov decision processes, ...

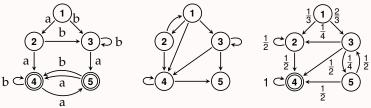


F-coalgebra

a unifying theory of automata and strong bisimilarity

The Automata Zoo

Deterministic finite automata, tree automata, (labeled) transition systems, weighted and probabilistic automata, Markov decision processes, ...



F-coalgebra

a unifying theory of automata and strong bisimilarity

This Work

a fast and general algorithm for minimizing automata

What's an *F*-coalgebra?

What's an *F*-coalgebra?

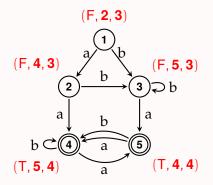
Definition

Let $F : \mathcal{C} \longrightarrow \mathcal{C}$ be an endofunctor on a category \mathcal{C} . An F-coalgebra is an object A of \mathcal{C} together with a morphism $\alpha : A \longrightarrow FA$ of \mathcal{C} , usually written as (A, α) . An F-coalgebra homomorphism from (A, α) to another F-coalgebra (B, β) is a morphism $f : A \longrightarrow B$ in \mathcal{C} such that $Ff \circ \alpha = \beta \circ f$. Thus the F-coalgebras for a given functor F constitute a category.

What's an *F*-coalgebra?

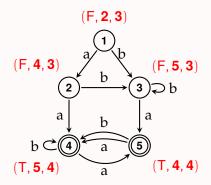
Definition Let $F : \mathcal{C} \longrightarrow \mathcal{C}$ be an ordefunctor on a category \mathcal{C} . As F-coalgebra is an object A of \mathcal{C} together with a morphism $\alpha : A \to \mathcal{L} A$ of \mathcal{C} , usually written as (A, α) . An F-coalgebra homomorphism from (A, α) to another F-coalgebra (B, β) is a morphism $f : A \to B$ in \mathcal{C} such that $Ff \circ \alpha = \beta \circ f$. Thus the F-coalgebras for e-given functor F constitute a category.

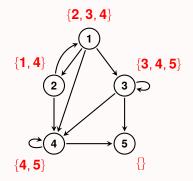
Finite coalgebras unify automata



 $\begin{array}{c} \textbf{DFA} \\ \textbf{C} \rightarrow \{\textbf{F}, \textbf{T}\} \times \textbf{C} \times \textbf{C} \end{array}$

Finite coalgebras unify automata

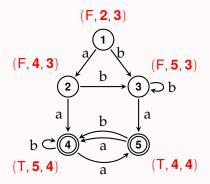


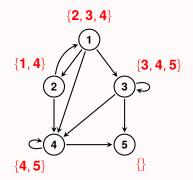


 $\begin{array}{c} \textbf{DFA} \\ \textbf{C} \rightarrow \{\textbf{F}, \textbf{T}\} \times \textbf{C} \times \textbf{C} \end{array}$

Transition system $C \rightarrow \mathcal{P}(C)$

Finite coalgebras unify automata



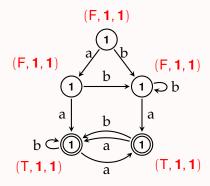


 $\begin{array}{c} \textbf{DFA} \\ \textbf{C} \rightarrow \{\textbf{F}, \textbf{T}\} \times \textbf{C} \times \textbf{C} \end{array}$

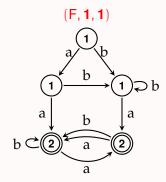
Transition system $C \rightarrow \mathcal{P}(C)$

Labeled transition system $C \rightarrow \mathcal{P}(A \times C)$

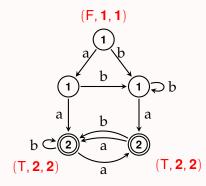
Markov Decision Process $\mathcal{C} \rightarrow \mathcal{P}(\mathcal{D}(\mathcal{C}))$



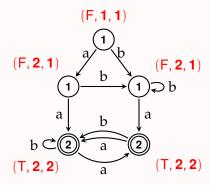
- Set all the state numbers to 1.
- Pick equivalence class
 - Compute missing signatures.
 - Assign new state numbers & Remove signatures from predecessors of changed states.
- Iterate until all states have a signature.



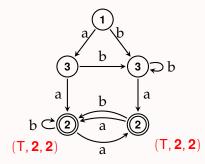
- Set all the state numbers to 1.
- Pick equivalence class
 - Compute missing signatures.
 - Assign new state numbers & Remove signatures from predecessors of changed states.
- Iterate until all states have a signature.



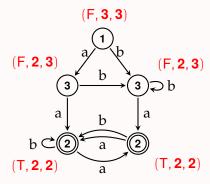
- Set all the state numbers to 1.
- Pick equivalence class
 - Compute missing signatures.
 - Assign new state numbers & Remove signatures from predecessors of changed states.
- Iterate until all states have a signature.



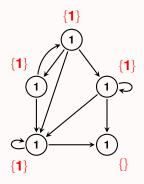
- Set all the state numbers to 1.
- Pick equivalence class
 - Compute missing signatures.
 - Assign new state numbers & Remove signatures from predecessors of changed states.
- Iterate until all states have a signature.



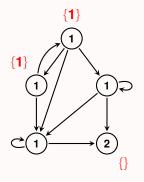
- Set all the state numbers to 1.
- Pick equivalence class
 - Compute missing signatures.
 - Assign new state numbers & Remove signatures from predecessors of changed states.
- Iterate until all states have a signature.



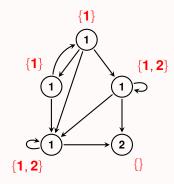
- Set all the state numbers to 1.
- Pick equivalence class
 - Compute missing signatures.
 - Assign new state numbers & Remove signatures from predecessors of changed states.
- Iterate until all states have a signature.



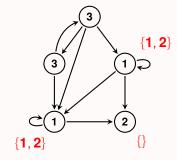
- Set all the state numbers to 1.
- Pick equivalence class
 - Compute missing signatures.
 - Assign new state numbers & Remove signatures from predecessors of changed states.
- Iterate until all states have a signature.



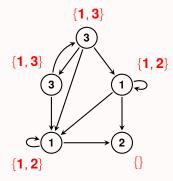
- Set all the state numbers to 1.
- Pick equivalence class
 - Compute missing signatures.
 - Assign new state numbers & Remove signatures from predecessors of changed states.
- Iterate until all states have a signature.



- Set all the state numbers to 1.
- Pick equivalence class
 - Compute missing signatures.
 - Assign new state numbers & Remove signatures from predecessors of changed states.
- Iterate until all states have a signature.



- Set all the state numbers to 1.
- Pick equivalence class
 - Compute missing signatures.
 - Assign new state numbers & Remove signatures from predecessors of changed states.
- Iterate until all states have a signature.



- Set all the state numbers to 1.
- Pick equivalence class
 - Compute missing signatures.
 - Assign new state numbers & Remove signatures from predecessors of changed states.
- Iterate until all states have a signature.

- Ability to compute signatures
- Ability to determine predecessors

- Ability to compute signatures
- Ability to determine predecessors

Complexity

- Ability to compute signatures
- Ability to determine predecessors

Complexity

- How many times does a state's number change?
 - at most O(log n) times, if we use the old state number for largest new block

- Ability to compute signatures
- Ability to determine predecessors

Complexity

- How many times does a state's number change?
 - at most O(log n) times, if we use the old state number for largest new block
- How many times does a signature get computed?

- Ability to compute signatures
- Ability to determine predecessors

Complexity

- at most O(log n) times, if we use the old state number for largest new block
- How many times does a signature get computed?
 - at most $O(\log n)$ times per edge

- Ability to compute signatures
- Ability to determine predecessors

Complexity

- at most O(log n) times, if we use the old state number for largest new block
- How many times does a signature get computed?
 - at most $O(\log n)$ times per edge
- ► At most *O*(*m* log *n*) signature computations

- Ability to compute signatures
- Ability to determine predecessors

Complexity

- at most O(log n) times, if we use the old state number for largest new block
- How many times does a signature get computed?
 - at most $O(\log n)$ times per edge
- ► At most *O*(*m* log *n*) signature computations
 - ► Total complexity: usually *O*(*km* log *n*)

- Ability to compute signatures
- Ability to determine predecessors

Complexity

- at most O(log n) times, if we use the old state number for largest new block
- How many times does a signature get computed?
 - at most $O(\log n)$ times per edge
- ► At most *O*(*m* log *n*) signature computations
 - ► Total complexity: usually *O*(*km* log *n*)
- What about the complexity of bookkeeping?
 - See paper for n-way partition refinement data structure

Comparison *Boa* Our algorithm

Comparison

BoaOur algorithmCoPaRAsymptotically more efficient
 $(O(m \log n) \text{ signatures vs } O(m \log n))$
Applicable to zippable functors

Comparison

 Boa Our algorithm
CoPaR Asymptotically more efficient (O(m log n) signatures vs O(m log n)) Applicable to zippable functors
DCPR Distributed coalgebraic algorithm Same generality as us Quadratic complexity Comparison

Boa Our algorithm

CoPaRAsymptotically more efficient
 $(O(m \log n) \text{ signatures vs } O(m \log n))$
Applicable to zippable functors

- *DCPR* Distributed coalgebraic algorithm Same generality as us Quadratic complexity
- *mCRL*² Specialized C++ algorithm suite for labeled transition systems $C \rightarrow \mathcal{P}(A \times C)$

Several LTS minimization algorithms from literature ('90, '03, '17, '19)

benchmark		time (s)			memory (MB)	
type	n	CoPaR	DCPR	Воа	DCPR	Воа
fms	1639440	232	84	1.12	514×32	196
	4459455	_	406	4.47	1690×32	582
wlan	607727	105	855	0.28	147×32	42
	1632799	_	2960	0.79	379×32	93
wta(W)	152107	566	79	0.74	642×32	83
	944250	_	675	11.96	6786×32	1228
wta(Z)	156913	438	82	0.48	677×32	92
	1007990	_	645	16.75	5644×32	1325
wta(2)	154863	449	160	0.81	621×32	79
	1300000	_	1377	23.35	7092×32	1647

What is the cost of generality?

benchmark		time	e (s)	memory (MB)	
type	n	mCRL2	Воа	mCRL2	Воа
cwi	2416632	13.9	1.4	1780	249
	7838608	214.2	15.8	5777	814
	33949609	282.2	31.5	16615	2776
vasy	6020550	33.8	3.1	2124	520
	11026932	51.6	6.1	2768	619
	12323703	56.9	7.0	3103	734

For *mCRL2*, we pick its best algorithm and its self-reported time. For *Boa*, we report wall-clock time.