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Mechanization of session types

State of the art:

> Type safety for higher order binary session types
(Thiemann 2019, Rouvoet et al. 2020, Hinrichsen et al. 2021)

» Deadlock freedom for a single multiparty session
(Castro-Perez et al. 2021)

This work:

» Mechanized deadlock and leak freedom for higher order binary session types
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Setting: a lambda calculus with session types, inspired by GV

Channel operation Type signature

let ¢ = fork(A c’, ...) fork:(s—o1l)—os
let ¢ = send(c,msg) send: (I7.s)x7—0s
let (c,msg) = receive(c) receive: ?T.s—0sX T
close(c) close:End—o1

» Small-step operational semantics with flat thread pool & heap of buffers
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let ¢ = fork(A c’, ...) fork:(s—o1l)—os
let ¢ = send(c,msg) send: (I7.s)x7—0s
let (c,msg) = receive(c) receive: ?T.s—0SX T
close(c) close:End—o1

Small-step operational semantics with flat thread pool & heap of buffers
Untyped programs can deadlock (e.g. due to cyclic waiting dependency)
Untyped programs can leak memory (e.g. due to reference cycles)

Our goal: Mechanized proof that typed programs don't deadlock & don't leak
Probem: reasoning about dependency structure in a proof assistant is hard
Our approach: develop connectivity graph framework
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Connectivity graphs

> Vertices represent threads & channels
> Edges represent references, labeled with the session type
» Keeps track of heap typing and reference topology simultaneously
> Progress & preservation style proof with the following invariant:
» The configuration has an acyclic connectivity graph
> Each thread & channel satisfies a local invariant linking its configuration state with
the session types on its edges in the graph
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Waiting induction principle
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Waiting induction principle

Lemma (Waiting induction)
To prove P(v), we may assume P(w) for all w < v.
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Waiting induction principle

Lemma (Waiting induction)
To prove P(v), we may assume P(w) for all w < v.
> Used to prove invariant = deadlock freedom

» This deadlock freedom proof does only local, language specific reasoning.

» Graph acyclicity reasoning is encapsulated in generic waiting induction.
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Local graph transformations

Preserves:
» |nvariants

> Acyclicity
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Local graph transformations

Preserves:
» |nvariants

> Acyclicity

Generic?
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Separation logic local invariants

We state the local invariant for each vertex in separation logic:
» Local invariant links a vertex to its run-time configuration state
» Local invariant can talk about incoming edges and outgoing edges
» QOutgoing edges become separation logic resources
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Separation logic local invariants

We state the local invariant for each vertex in separation logic:
» Local invariant links a vertex to its run-time configuration state
» Local invariant can talk about incoming edges and outgoing edges
» QOutgoing edges become separation logic resources
Local invariant for threads:
» The expression is well-typed in the run-time type system I'; X Fe: T

> Y-environment maps channel references to session types,
and is given by the outgoing edges of the thread’s vertex

» We keep T implicit by using separation logic: (T'Fe: 7)€ iProp
(inspired by Rouvoet et al.’s approach for typed interpreters)
Local invariant for channels:
» The buffers are consistent with the session types on the incoming edges
» The values in the buffers are well typed with respect to the outgoing edges
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Advantages of separation logic

» Separation logic is usually used for verifying individual programs

> But also for type safety proofs using logical relations (e.g. Iris), and definitional
interpreters (Rouvoet et al.)

> We use it in a progress & preservation style proof
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» Separation logic is usually used for verifying individual programs

> But also for type safety proofs using logical relations (e.g. Iris), and definitional
interpreters (Rouvoet et al.)

> We use it in a progress & preservation style proof

Advantages of separation logic for mechanized linear type systems:
> Automatically takes care of zillions of formal disjointness conditions
» Heap typing & only shows up when relevant, and is completely hidden otherwise
» Provides intuitive high-level ownership reasoning, even for syntactic properties

(K[e] : B) < 3JA. (e: A)AVE. (¢ : A) = (K][€'] : B) (traditional lemma)
(Kle]: B) -+ 3A. (e: A)xVe'. (¢': A) = (K[e']: B) (linear+heap lemma)
Without separation logic:
(ZFKle]:B) &= A Z, 5. (T1NS=0AZ = US)A(Z1Fe: A)A
Ve, 53 (ZoNE3=0AS ke 1 A)— (S, U3 F K[e']: B)
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Graph transformations in separation logic

Lemmas for maintaining the invariant when adding, removing, and relabeling edges,
and exchanging separation logic resources.
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Graph transformations in separation logic

Lemmas for maintaining the invariant when adding, removing, and relabeling edges,
and exchanging separation logic resources.
Lemma (Exchange)
Let vy, v, € V. To prove wf(P) implies wf(P’), it suffices to prove:
1. P(v,A)— P'(v,A) for all ve V\{vy, v} and A € Multiset L

2. P(vy,Ar) = 3l.own(vy — 1) x VA, € Multiset L. P(v,,{I} W Ay)
— 3. (own(vy = ") = P'(v1, A1) % P’ (v, {I'} W Ap)
for all A, € Multiset L
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Graph transformations in separation logic

Lemmas for maintaining the invariant when adding, removing, and relabeling edges,
and exchanging separation logic resources.
Lemma (Exchange)
Let vy, v, € V. To prove wf(P) implies wf(P’), it suffices to prove:

1. P(v,A)— P'(v,A) for all ve V\{vy, v} and A € Multiset L

2. P(vy,Ar) = 3l.own(vy — 1) x VA, € Multiset L. P(v,,{I} W Ay)

— 3. (own(vy = ") = P'(v1, A1) % P’ (v, {I'} W Ap)
for all A, € Multiset L

Preservation proof appears to do no graph reasoning at all!

» The construction of the new connectivity graph, and the proof of its acyclicity, is
encapsulated in the generic lemmas.

» The preservation proof does only local, language specific reasoning.
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Mechanization

Our language:

1. Functional language + session-typed channels
2. Linear and unrestricted types

> Unrestricted: numbers, sums, products, unrestricted function type (—)
» Linear: channels, sums, products, linear function type (—o)

3. General recursive types: coinductive method adapted from Gay et al. [2020]

> Recursive session types, including through the message
> Algebraic data types using recursion + sums + products
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Mechanization

Our language:
1. Functional language + session-typed channels
2. Linear and unrestricted types

> Unrestricted: numbers, sums, products, unrestricted function type (—)
» Linear: channels, sums, products, linear function type (—o)

3. General recursive types: coinductive method adapted from Gay et al. [2020]
> Recursive session types, including through the message
> Algebraic data types using recursion + sums + products
Mechanization in Coq:
» Generic Cgraph(V, L) library: 4999 LOC
> Language definition: 451 LOC
> Language specific and leak freedom proof: 1688 LOC
Initial direct attempt: proofs goals got too complex.
Graph reasoning intertwined with language specifics.

Encapsulating the graph reasoning made it manageable.
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Questions?

julesjacobs@gmail.com
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