
Multiparty GV
Functional Multiparty Session Types

With Certified Deadlock Freedom

Jules Jacobs
Radboud University

Stephanie Balzer
Carnegie Mellon University

Robbert Krebbers
Radboud University

1 / 13

Usual message passing:
▶ Stream of messages of fixed type
▶ e.g., Go, Rust: Receiver<T>, Sender<T>

Session types:
▶ Flexible message passing protocols
▶ Type of message can depend on the state of

the protocol
▶ Linear types

2 / 13

Usual message passing:
▶ Stream of messages of fixed type
▶ e.g., Go, Rust: Receiver<T>, Sender<T>

Session types:
▶ Flexible message passing protocols
▶ Type of message can depend on the state of

the protocol
▶ Linear types

2 / 13

Binary session types: Honda et al. ’93, ’98

c : !Nat. ?Bool. !Nat.End

⇕ dual
c ′ : ?Nat. !Bool. ?Nat.End

s ::= !τ.s | ?τ.s︸ ︷︷ ︸
send/recv

| End | s⊕ s | s& s︸ ︷︷ ︸
choice

| µx.s | x︸ ︷︷ ︸
recursion

τ ::= Nat | Bool | τ× τ | τ → τ | ... | s︸︷︷︸
first-class channels

3 / 13

Binary session types: Honda et al. ’93, ’98

c : !Nat. ?Bool. !Nat.End
⇕ dual

c ′ : ?Nat. !Bool. ?Nat.End

s ::= !τ.s | ?τ.s︸ ︷︷ ︸
send/recv

| End | s⊕ s | s& s︸ ︷︷ ︸
choice

| µx.s | x︸ ︷︷ ︸
recursion

τ ::= Nat | Bool | τ× τ | τ → τ | ... | s︸︷︷︸
first-class channels

3 / 13

Binary session types: Honda et al. ’93, ’98

c : !Nat. ?Bool. !Nat.End
⇕ dual

c ′ : ?Nat. !Bool. ?Nat.End

s ::= !τ.s | ?τ.s︸ ︷︷ ︸
send/recv

| End

| s⊕ s | s& s︸ ︷︷ ︸
choice

| µx.s | x︸ ︷︷ ︸
recursion

τ ::= Nat | Bool | τ× τ | τ → τ | ... | s︸︷︷︸
first-class channels

3 / 13

Binary session types: Honda et al. ’93, ’98

c : !Nat. ?Bool. !Nat.End
⇕ dual

c ′ : ?Nat. !Bool. ?Nat.End

s ::= !τ.s | ?τ.s︸ ︷︷ ︸
send/recv

| End | s⊕ s | s& s︸ ︷︷ ︸
choice

| µx.s | x︸ ︷︷ ︸
recursion

τ ::= Nat | Bool | τ× τ | τ → τ | ... | s︸︷︷︸
first-class channels

3 / 13

Binary session types: Honda et al. ’93, ’98

c : !Nat. ?Bool. !Nat.End
⇕ dual

c ′ : ?Nat. !Bool. ?Nat.End

s ::= !τ.s | ?τ.s︸ ︷︷ ︸
send/recv

| End | s⊕ s | s& s︸ ︷︷ ︸
choice

| µx.s | x︸ ︷︷ ︸
recursion

τ ::= Nat | Bool | τ× τ | τ → τ | ... | s︸︷︷︸
first-class channels

3 / 13

Binary session types: Honda et al. ’93, ’98

c : !Nat. ?Bool. !Nat.End
⇕ dual

c ′ : ?Nat. !Bool. ?Nat.End

s ::= !τ.s | ?τ.s︸ ︷︷ ︸
send/recv

| End | s⊕ s | s& s︸ ︷︷ ︸
choice

| µx.s | x︸ ︷︷ ︸
recursion

τ ::= Nat | Bool | τ× τ | τ → τ | ...

| s︸︷︷︸
first-class channels

3 / 13

Binary session types: Honda et al. ’93, ’98

c : !Nat. ?Bool. !Nat.End
⇕ dual

c ′ : ?Nat. !Bool. ?Nat.End

s ::= !τ.s | ?τ.s︸ ︷︷ ︸
send/recv

| End | s⊕ s | s& s︸ ︷︷ ︸
choice

| µx.s | x︸ ︷︷ ︸
recursion

τ ::= Nat | Bool | τ× τ | τ → τ | ... | s︸︷︷︸
first-class channels

3 / 13

Multiparty session types: Honda et al. ’08

c0 : !1Nat. ?2Nat.End
c1 : ?0Nat. !2Bool.End
c2 : ?1Bool. !0Nat.End

 consistent

4 / 13

Two worlds of session types
GV family languages

Gay, Vasconcelos ’10, Wadler ’12

▶ Binary session types

▶ Deadlock-freedom by
duality & linear typing

▶ Dynamic spawning
▶ Channels first class values
▶ Functional programming

MPST family languages
Honda ’08

▶ Multiparty session types

▶ Deadlock-freedom by
global consistency check

▶ One static session
▶ Channels second class
▶ Pi calculus variants

GV × MPST = MPGV

5 / 13

Two worlds of session types
GV family languages

Gay, Vasconcelos ’10, Wadler ’12

▶ Binary session types
▶ Deadlock-freedom by

duality & linear typing

▶ Dynamic spawning
▶ Channels first class values
▶ Functional programming

MPST family languages
Honda ’08

▶ Multiparty session types
▶ Deadlock-freedom by

global consistency check

▶ One static session
▶ Channels second class
▶ Pi calculus variants

GV × MPST = MPGV

5 / 13

Two worlds of session types
GV family languages

Gay, Vasconcelos ’10, Wadler ’12

▶ Binary session types
▶ Deadlock-freedom by

duality & linear typing

▶ Dynamic spawning

▶ Channels first class values
▶ Functional programming

MPST family languages
Honda ’08

▶ Multiparty session types
▶ Deadlock-freedom by

global consistency check

▶ One static session

▶ Channels second class
▶ Pi calculus variants

GV × MPST = MPGV

5 / 13

Two worlds of session types
GV family languages

Gay, Vasconcelos ’10, Wadler ’12

▶ Binary session types
▶ Deadlock-freedom by

duality & linear typing

▶ Dynamic spawning
▶ Channels first class values

▶ Functional programming

MPST family languages
Honda ’08

▶ Multiparty session types
▶ Deadlock-freedom by

global consistency check

▶ One static session
▶ Channels second class

▶ Pi calculus variants

GV × MPST = MPGV

5 / 13

Two worlds of session types
GV family languages

Gay, Vasconcelos ’10, Wadler ’12

▶ Binary session types
▶ Deadlock-freedom by

duality & linear typing

▶ Dynamic spawning
▶ Channels first class values
▶ Functional programming

MPST family languages
Honda ’08

▶ Multiparty session types
▶ Deadlock-freedom by

global consistency check

▶ One static session
▶ Channels second class
▶ Pi calculus variants

GV × MPST = MPGV

5 / 13

Two worlds of session types
GV family languages

Gay, Vasconcelos ’10, Wadler ’12

▶ Binary session types
▶ Deadlock-freedom by

duality & linear typing

▶ Dynamic spawning
▶ Channels first class values
▶ Functional programming

MPST family languages
Honda ’08

▶ Multiparty session types
▶ Deadlock-freedom by

global consistency check

▶ One static session
▶ Channels second class
▶ Pi calculus variants

GV × MPST = MPGV
5 / 13

GV

×

MPST

=

MPGV

Contributions
1. Design of MPGV: concurrent λ-calculus with multiparty

message-passing channels as first-class values
(+ channel/thread spawning + rectypes + choice)

2. MPGV ⊃ GV using new redirect for modular programming
3. Key property: well-typed programs don’t get stuck

(global progress =⇒ no receive deadlocks)

4. Meta theory: fully mechanized in Coq

6 / 13

GV

×

MPST

=

MPGV

Contributions
1. Design of MPGV: concurrent λ-calculus with multiparty

message-passing channels as first-class values
(+ channel/thread spawning + rectypes + choice)

2. MPGV ⊃ GV using new redirect for modular programming
3. Key property: well-typed programs don’t get stuck

(global progress =⇒ no receive deadlocks)

4. Meta theory: fully mechanized in Coq

6 / 13

GV

×

MPST

=

MPGV

Contributions
1. Design of MPGV: concurrent λ-calculus with multiparty

message-passing channels as first-class values
(+ channel/thread spawning + rectypes + choice)

2. MPGV ⊃ GV using new redirect for modular programming

3. Key property: well-typed programs don’t get stuck
(global progress =⇒ no receive deadlocks)

4. Meta theory: fully mechanized in Coq

6 / 13

GV

×

MPST

=

MPGV

Contributions
1. Design of MPGV: concurrent λ-calculus with multiparty

message-passing channels as first-class values
(+ channel/thread spawning + rectypes + choice)

2. MPGV ⊃ GV using new redirect for modular programming
3. Key property: well-typed programs don’t get stuck

(global progress =⇒ no receive deadlocks)

4. Meta theory: fully mechanized in Coq

6 / 13

GV

×

MPST

=

MPGV

Contributions
1. Design of MPGV: concurrent λ-calculus with multiparty

message-passing channels as first-class values
(+ channel/thread spawning + rectypes + choice)

2. MPGV ⊃ GV using new redirect for modular programming
3. Key property: well-typed programs don’t get stuck

(global progress =⇒ no receive deadlocks)

4. Meta theory: fully mechanized in Coq

6 / 13

Tour of MPGV: n-ary fork
Inspired by multi-cut of Carbone et al. CONCUR’16:

let c0 = fork(λc1. e1,
λc2. e2,
λc3. e3)

in e0

=⇒

7 / 13

Tour of MPGV: n-ary fork
Inspired by multi-cut of Carbone et al. CONCUR’16:

let c0 : s0 = fork⟨s⟩ (λc1 : s1. e1 : (),
λc2 : s2. e2 : (),
λc3 : s3. e3 : ())

in e0

(s0, s1, . . . , sn) consistent

=⇒

7 / 13

Tour of MPGV: n-ary fork
Inspired by multi-cut of Carbone et al. CONCUR’16:

let c0 : s0 = fork⟨s⟩ (λc1 : s1. e1 : (),
λc2 : s2. e2 : (),
λc3 : s3. e3 : ())

in e0

(s0, s1, . . . , sn) consistent

=⇒

7 / 13

Tour of MPGV: send and receive

sendp : (!pτ. s)× τ → s
receivep : (?pτ. s) → τ× s

(+ choice)

▶ First-class channels:

=⇒

▶ In the paper: asynchronous semantics
(messages go via buffers)

8 / 13

Tour of MPGV: send and receive

sendp : (!pτ. s)× τ → s
receivep : (?pτ. s) → τ× s

(+ choice)

▶ First-class channels:

=⇒

▶ In the paper: asynchronous semantics
(messages go via buffers)

8 / 13

Tour of MPGV: send and receive

sendp : (!pτ. s)× τ → s
receivep : (?pτ. s) → τ× s

(+ choice)

▶ First-class channels:

=⇒

▶ In the paper: asynchronous semantics
(messages go via buffers)

8 / 13

Close

close : End → ()

=⇒

9 / 13

Close

close : End → ()

=⇒

9 / 13

Tour of MPGV: redirect

We want: MPGV ⊃ GV

Problem: participant annotations get in the way

!0Nat. ?0Bool.End ≠ !1Nat. ?1Bool.End

Solution:

redirect[1 7→ 0] : !0Nat. ?0Bool.End →
!1Nat. ?1Bool.End

▶ Used in translation from GV to MPGV
▶ In the paper: useful for modularity

10 / 13

Tour of MPGV: redirect

We want: MPGV ⊃ GV
Problem: participant annotations get in the way

!0Nat. ?0Bool.End ≠ !1Nat. ?1Bool.End

Solution:

redirect[1 7→ 0] : !0Nat. ?0Bool.End →
!1Nat. ?1Bool.End

▶ Used in translation from GV to MPGV
▶ In the paper: useful for modularity

10 / 13

Tour of MPGV: redirect

We want: MPGV ⊃ GV
Problem: participant annotations get in the way

!0Nat. ?0Bool.End ≠ !1Nat. ?1Bool.End

Solution:

redirect[1 7→ 0] : !0Nat. ?0Bool.End →
!1Nat. ?1Bool.End

▶ Used in translation from GV to MPGV
▶ In the paper: useful for modularity

10 / 13

Tour of MPGV: redirect

We want: MPGV ⊃ GV
Problem: participant annotations get in the way

!0Nat. ?0Bool.End ≠ !1Nat. ?1Bool.End

Solution:

redirect[1 7→ 0] : !0Nat. ?0Bool.End →
!1Nat. ?1Bool.End

▶ Used in translation from GV to MPGV
▶ In the paper: useful for modularity

10 / 13

Mechanized meta theory

– Castro-Perez et al. PLDI’21

Mechanized in Coq:
▶ Language definition ≈500 LOC, proofs ≈10,000 LOC
▶ Small-step asynchronous semantics with threads and buffers
▶ Safety: threads don’t get stuck (except on receive)
▶ Deadlock freedom: no subset of threads stuck on each other
▶ Leak freedom: no messages left behind

11 / 13

Mechanized meta theory

– Castro-Perez et al. PLDI’21

Mechanized in Coq:
▶ Language definition ≈500 LOC, proofs ≈10,000 LOC
▶ Small-step asynchronous semantics with threads and buffers

▶ Safety: threads don’t get stuck (except on receive)
▶ Deadlock freedom: no subset of threads stuck on each other
▶ Leak freedom: no messages left behind

11 / 13

Mechanized meta theory

– Castro-Perez et al. PLDI’21

Mechanized in Coq:
▶ Language definition ≈500 LOC, proofs ≈10,000 LOC
▶ Small-step asynchronous semantics with threads and buffers
▶ Safety: threads don’t get stuck (except on receive)

▶ Deadlock freedom: no subset of threads stuck on each other
▶ Leak freedom: no messages left behind

11 / 13

Mechanized meta theory

– Castro-Perez et al. PLDI’21

Mechanized in Coq:
▶ Language definition ≈500 LOC, proofs ≈10,000 LOC
▶ Small-step asynchronous semantics with threads and buffers
▶ Safety: threads don’t get stuck (except on receive)
▶ Deadlock freedom: no subset of threads stuck on each other

▶ Leak freedom: no messages left behind

11 / 13

Mechanized meta theory

– Castro-Perez et al. PLDI’21

Mechanized in Coq:
▶ Language definition ≈500 LOC, proofs ≈10,000 LOC
▶ Small-step asynchronous semantics with threads and buffers
▶ Safety: threads don’t get stuck (except on receive)
▶ Deadlock freedom: no subset of threads stuck on each other
▶ Leak freedom: no messages left behind

11 / 13

How to know that you mechanized the right theorem?

▶ The statement deadlock freedom is complex (5 LOC)
▶ Statement relies on several auxiliary definitions (≈100 LOC)
▶ How do we know that the theorem statement is not wrong?

▶ Prove easy to understand corollary, global progress:
If e : () and e ;∗ρ then either ρ = ∅ or ∃ρ ′. ρ ; ρ ′

▶ 1 LOC, no auxiliary definitions
▶ Sanity check on deadlock freedom statement

12 / 13

How to know that you mechanized the right theorem?

▶ The statement deadlock freedom is complex (5 LOC)
▶ Statement relies on several auxiliary definitions (≈100 LOC)
▶ How do we know that the theorem statement is not wrong?

▶ Prove easy to understand corollary, global progress:
If e : () and e ;∗ρ then either ρ = ∅ or ∃ρ ′. ρ ; ρ ′

▶ 1 LOC, no auxiliary definitions
▶ Sanity check on deadlock freedom statement

12 / 13

How to know that you mechanized the right theorem?

▶ The statement deadlock freedom is complex (5 LOC)
▶ Statement relies on several auxiliary definitions (≈100 LOC)
▶ How do we know that the theorem statement is not wrong?

▶ Prove easy to understand corollary, global progress:
If e : () and e ;∗ρ then either ρ = ∅ or ∃ρ ′. ρ ; ρ ′

▶ 1 LOC, no auxiliary definitions
▶ Sanity check on deadlock freedom statement

12 / 13

How to know that you mechanized the right theorem?

▶ The statement deadlock freedom is complex (5 LOC)
▶ Statement relies on several auxiliary definitions (≈100 LOC)
▶ How do we know that the theorem statement is not wrong?

▶ Prove easy to understand corollary, global progress:
If e : () and e ;∗ρ then either ρ = ∅ or ∃ρ ′. ρ ; ρ ′

▶ 1 LOC, no auxiliary definitions
▶ Sanity check on deadlock freedom statement

12 / 13

What’s in the paper

▶ Full MGPV language definition and semantics
▶ Asynchronous semantics with buffers
▶ Choice in session types
▶ Recursive types & recursive session types (mutual)
▶ Linear & unrestricted types

▶ Multiparty consistency & global types
▶ Deadlock freedom proof

▶ With pictures
▶ Formal details (with separation logic)

▶ Encoding GV in MPGV
▶ All theorems mechanized in Coq

Questions?

13 / 13

What’s in the paper

▶ Full MGPV language definition and semantics
▶ Asynchronous semantics with buffers
▶ Choice in session types
▶ Recursive types & recursive session types (mutual)
▶ Linear & unrestricted types

▶ Multiparty consistency & global types

▶ Deadlock freedom proof
▶ With pictures
▶ Formal details (with separation logic)

▶ Encoding GV in MPGV
▶ All theorems mechanized in Coq

Questions?

13 / 13

What’s in the paper

▶ Full MGPV language definition and semantics
▶ Asynchronous semantics with buffers
▶ Choice in session types
▶ Recursive types & recursive session types (mutual)
▶ Linear & unrestricted types

▶ Multiparty consistency & global types
▶ Deadlock freedom proof

▶ With pictures
▶ Formal details (with separation logic)

▶ Encoding GV in MPGV
▶ All theorems mechanized in Coq

Questions?

13 / 13

What’s in the paper

▶ Full MGPV language definition and semantics
▶ Asynchronous semantics with buffers
▶ Choice in session types
▶ Recursive types & recursive session types (mutual)
▶ Linear & unrestricted types

▶ Multiparty consistency & global types
▶ Deadlock freedom proof

▶ With pictures
▶ Formal details (with separation logic)

▶ Encoding GV in MPGV

▶ All theorems mechanized in Coq

Questions?

13 / 13

What’s in the paper

▶ Full MGPV language definition and semantics
▶ Asynchronous semantics with buffers
▶ Choice in session types
▶ Recursive types & recursive session types (mutual)
▶ Linear & unrestricted types

▶ Multiparty consistency & global types
▶ Deadlock freedom proof

▶ With pictures
▶ Formal details (with separation logic)

▶ Encoding GV in MPGV
▶ All theorems mechanized in Coq

Questions?

13 / 13

What’s in the paper

▶ Full MGPV language definition and semantics
▶ Asynchronous semantics with buffers
▶ Choice in session types
▶ Recursive types & recursive session types (mutual)
▶ Linear & unrestricted types

▶ Multiparty consistency & global types
▶ Deadlock freedom proof

▶ With pictures
▶ Formal details (with separation logic)

▶ Encoding GV in MPGV
▶ All theorems mechanized in Coq

Questions?

13 / 13

