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> e.g., Go, Rust: Receiver<T>, Sender<T>

Session types:
> Flexible message passing protocols

> Type of message can depend on the state of
the protocol

> Linear types
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Binary session types: Honda et al. "93, 98

c : !Nat.?Bool.!Nat. End
{ dual
c’: ?Nat.!Bool.?Nat. End

s:=Ilts|?2ts|End|s®s|s&s | ux.s|x
Ef_/ . ~ / - ~ J
send/recv choice recursion

Tu:=Nat|Bool |txT|T—7T]|...|] S
N~

first-class channels
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Multiparty session types: Honda et al. 08

Co: !'Nat.??°Nat.End
ci: ?°Nat.'?Bool.End } consistent
c,: ?'Bool.!°Nat. End
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Two worlds of session types

GV family languages MPST family languages
Gay, Vasconcelos 10, Wadler 12 Honda "08
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Two worlds of session types

GV family languages MPST family languages
Gay, Vasconcelos 10, Wadler 12 Honda "08
> Binary session types > Multiparty session types
» Deadlock-freedom by » Deadlock-freedom by
duality & linear typing global consistency check
o %’
» Dynamic spawning > One static session
» Channels first class values » Channels second class
» Functional programming  » Pi calculus variants

GV x MPST = MPGV
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MPST
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GV MPST MPGV

Contributions

1. Design of MPGYV: concurrent A-calculus with multiparty
message-passing channels as first-class values
(+ channel/thread spawning + rectypes + choice)

2. MPGV D GV using new redirect for modular programming

3. Key property: well-typed programs don’t get stuck
(global progress = no receive deadlocks)

4. Meta theory: fully mechanized in Coq
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Tour of MPGV: n-ary fork
Inspired by multi-cut of Carbone et al. CONCUR'16:
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Tour of MPGV: send and receive

send’: (P1.s) xt—s
receive’ : (?’1.s) - 1t x s
(+ choice)

» First-class channels:

2 . &

> In the paper: asynchronous semantics
(messages go via buffers)
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Close

close: End — ()
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Tour of MPGV: redirect

We want: MPGV D GV
Problem: participant annotations get in the way

1°Nat. ?°Bool. End # !"Nat. ?'Bool. End
Solution:

redirect[1 — 0] : !°Nat.?°Bool. End —
1"Nat.?'Bool. End

» Used in translation from GV to MPGV
> In the paper: useful for modularity
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Mechanized meta theory

Unfortunately, the more complicated the behaviour is, the
more error-prone the theory becomes. The literature reveals
broken proofs of subject reduction for several MPST sys-
tems [42], and a flaw of the decidability of subtyping [6]
for asynchronous MPST. All of which are caused by an in-
correct understanding of the (asynchronous) behaviour of
types.

— Castro-Perez et al. PLDI'21
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tems [42], and a flaw of the decidability of subtyping [6]
for asynchronous MPST. All of which are caused by an in-
correct understanding of the (asynchronous) behaviour of

types.
— Castro-Perez et al. PLDI'21

Mechanized in Coq:

> Language definition ~500 LOC, proofs ~ 10,000 LOC
» Small-step asynchronous semantics with threads and buffers
> Safety: threads don’t get stuck (except on receive)

> Deadlock freedom: no subset of threads stuck on each other
> Leak freedom: no messages left behind
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How to know that you mechanized the right theorem?

» The statement deadlock freedom is complex (5 LOC)

> Statement relies on several auxiliary definitions (=100 LOC)
> How do we know that the theorem statement is not wrong?

» Prove easy to understand corollary, global progress:
Ife: () and e ~*p then either p = () or 3p”. p ~ p’

» 1 LOC, no auxiliary definitions

» Sanity check on deadlock freedom statement
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What'’s in the paper

» Full MGPV language definition and semantics
> Asynchronous semantics with buffers
Choice in session types
Recursive types & recursive session types (mutual)
Linear & unrestricted types

vyy

» Multiparty consistency & global types
» Deadlock freedom proof

> With pictures
> Formal details (with separation logic)

» Encoding GV in MPGV

> All theorems mechanized in Coq

Questions?
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