Multiparty GV

Functional Multiparty Session Types
With Certified Deadlock Freedom

Jules Jacobs Stephanie Balzer Robbert Krebbers
Radboud University Carnegie Mellon University Radboud University

1/13

Usual message passing:
> Stream of messages of fixed type
> e.g., Go, Rust: Receiver<T>, Sender<T>

2/13

Usual message passing:
> Stream of messages of fixed type
> e.g., Go, Rust: Receiver<T>, Sender<T>

Session types:
> Flexible message passing protocols

> Type of message can depend on the state of
the protocol

> Linear types

2/13

Binary session types: Honda et al. "93, 98

c : !Nat.?Bool.!Nat. End

3/13

Binary session types: Honda et al. "93, 98

c : !Nat.?Bool.!Nat. End
{ dual
c’: ?Nat.!Bool.?Nat. End

3/13

Binary session types: Honda et al. "93, 98

c : !Nat.?Bool.!Nat. End
{ dual
c’: ?Nat.!Bool.?Nat. End

s:=Ilts|?ts|End
E,_/
send /recv

3/13

Binary session types: Honda et al. "93, 98

c : !Nat.?Bool.!Nat. End
{ dual
c’: ?Nat.!Bool.?Nat. End

S:=Ilts|?2ts|End|s®s|s&s
S—— ~ ~ /
send/recv choice

3/13

Binary session types: Honda et al. "93, 98

c : !Nat.?Bool.!Nat. End
{ dual
c’: ?Nat.!Bool.?Nat. End

s:=Ilts|?2ts|End|s®s|s&s | ux.s|x
Ef_/ . ~ / - ~ J
send/recv choice recursion

3/13

Binary session types: Honda et al. "93, 98

c : !Nat.?Bool.!Nat. End
{ dual
c’: ?Nat.!Bool.?Nat. End

s:=Ilts|?2ts|End|s®s|s&s | ux.s|x
Ef_/ . ~ / - ~ J
send/recv choice recursion

Tu=Nat|Bool |txT|T—T]|..

3/13

Binary session types: Honda et al. "93, 98

c : !Nat.?Bool.!Nat. End
{ dual
c’: ?Nat.!Bool.?Nat. End

s:=Ilts|?2ts|End|s®s|s&s | ux.s|x
Ef_/ . ~ / - ~ J
send/recv choice recursion

Tu:=Nat|Bool |txT|T—7T]|...|] S
N~

first-class channels

3/13

Multiparty session types: Honda et al. 08

Co: !'Nat.??°Nat.End
ci: ?°Nat.'?Bool.End } consistent
c,: ?'Bool.!°Nat. End

4/13

Two worlds of session types

GV family languages MPST family languages
Gay, Vasconcelos 10, Wadler 12 Honda "08

> Binary session types > Multiparty session types

5/13

Two worlds of session types

GV family languages MPST family languages
Gay, Vasconcelos 10, Wadler 12 Honda "08
> Binary session types > Multiparty session types
» Deadlock-freedom by » Deadlock-freedom by
duality & linear typing global consistency check

\TT/
A~

5/13

Two worlds of session types

GV family languages MPST family languages
Gay, Vasconcelos 10, Wadler 12 Honda "08
> Binary session types > Multiparty session types
» Deadlock-freedom by » Deadlock-freedom by
duality & linear typing global consistency check

\;/
A~

» Dynamic spawning > One static session

5/13

Two worlds of session types

GV family languages
Gay, Vasconcelos 10, Wadler 12

> Binary session types

» Deadlock-freedom by
duality & linear typing

\;/
A~

» Dynamic spawning

» Channels first class values

MPST family languages
Honda '08

> Multiparty session types

» Deadlock-freedom by
global consistency check

» One static session

» Channels second class

5/13

Two worlds of session types

GV family languages MPST family languages
Gay, Vasconcelos 10, Wadler 12 Honda "08
> Binary session types > Multiparty session types
» Deadlock-freedom by » Deadlock-freedom by
duality & linear typing global consistency check
o %’
» Dynamic spawning > One static session
» Channels first class values » Channels second class
» Functional programming » Pi calculus variants

5/13

Two worlds of session types

GV family languages MPST family languages
Gay, Vasconcelos 10, Wadler 12 Honda "08
> Binary session types > Multiparty session types
» Deadlock-freedom by » Deadlock-freedom by
duality & linear typing global consistency check
o %’
» Dynamic spawning > One static session
» Channels first class values » Channels second class
» Functional programming » Pi calculus variants

GV x MPST = MPGV

5/13

MPST

MPGV

6/13

GV MPST MPGV

Contributions

1. Design of MPGYV: concurrent A-calculus with multiparty
message-passing channels as first-class values
(+ channel/thread spawning + rectypes + choice)

6/13

GV MPST MPGV

Contributions

1. Design of MPGYV: concurrent A-calculus with multiparty
message-passing channels as first-class values
(+ channel/thread spawning + rectypes + choice)

2. MPGV D GV using new redirect for modular programming

6/13

GV MPST MPGV

Contributions

1. Design of MPGYV: concurrent A-calculus with multiparty
message-passing channels as first-class values
(+ channel/thread spawning + rectypes + choice)

2. MPGV D GV using new redirect for modular programming

3. Key property: well-typed programs don’t get stuck
(global progress = no receive deadlocks)

6/13

GV MPST MPGV

Contributions

1. Design of MPGYV: concurrent A-calculus with multiparty
message-passing channels as first-class values
(+ channel/thread spawning + rectypes + choice)

2. MPGV D GV using new redirect for modular programming

3. Key property: well-typed programs don’t get stuck
(global progress = no receive deadlocks)

4. Meta theory: fully mechanized in Coq

6/13

Tour of MPGV: n-ary fork
Inspired by multi-cut of Carbone et al. CONCUR'16:

let c; = fork(Acy. ey,
ACos. €5,
AC3. 93)

in g

7/13

Tour of MPGV: n-ary fork
Inspired by multi-cut of Carbone et al. CONCUR'16:

let cy: sp = fork(s) (Ac1:s1.€1: (),
AC>: So. €5: (),
AC3: S3.€3: ())
in g

(S9,81,...,Sn) consistent

7/13

Tour of MPGV: n-ary fork

Inspired by multi-cut of Carbone et al. CONCUR'16:

let cy: sp = fork(s) (Ac1:s1.€1: (),
AC>: So. €5: (),
AC3: S3.€3: ())
in g

(Sp,S1,...,Sn) consistent

L

7/13

Tour of MPGV: send and receive

send’: (P1.s) xt—s
receive’ : (?’1.s) - 1t x s

(+ choice)

8/13

Tour of MPGV: send and receive

send’: (P1.s) xt—s
receive’ : (?’1.s) - 1t x s
(+ choice)

» First-class channels:

2 . &

8/13

Tour of MPGV: send and receive

send’: (P1.s) xt—s
receive’ : (?’1.s) - 1t x s
(+ choice)

» First-class channels:

2 . &

> In the paper: asynchronous semantics
(messages go via buffers)

8/13

Close

close: End — ()

9/13

Close

close: End — ()

9/13

Tour of MPGV: redirect
We want: MPGV > GV

10/13

Tour of MPGV: redirect

We want: MPGV D GV
Problem: participant annotations get in the way

1°Nat. ?°Bool. End # !"Nat. ?'Bool. End

10/13

Tour of MPGV: redirect

We want: MPGV D GV
Problem: participant annotations get in the way

1°Nat. ?°Bool. End # !"Nat. ?'Bool. End
Solution:

redirect[1 — 0] : !°Nat.?°Bool. End —
1"Nat.?'Bool. End

10/13

Tour of MPGV: redirect

We want: MPGV D GV
Problem: participant annotations get in the way

1°Nat. ?°Bool. End # !"Nat. ?'Bool. End
Solution:

redirect[1 — 0] : !°Nat.?°Bool. End —
1"Nat.?'Bool. End

» Used in translation from GV to MPGV
> In the paper: useful for modularity

10/13

Mechanized meta theory

Unfortunately, the more complicated the behaviour is, the
more error-prone the theory becomes. The literature reveals
broken proofs of subject reduction for several MPST sys-
tems [42], and a flaw of the decidability of subtyping [6]
for asynchronous MPST. All of which are caused by an in-
correct understanding of the (asynchronous) behaviour of
types.

— Castro-Perez et al. PLDI'21

11/13

Mechanized meta theory

Unfortunately, the more complicated the behaviour is, the
more error-prone the theory becomes. The literature reveals
broken proofs of subject reduction for several MPST sys-
tems [42], and a flaw of the decidability of subtyping [6]
for asynchronous MPST. All of which are caused by an in-
correct understanding of the (asynchronous) behaviour of
types.

— Castro-Perez et al. PLDI'21

Mechanized in Coq:
> Language definition ~500 LOC, proofs ~ 10,000 LOC

» Small-step asynchronous semantics with threads and buffers

11/13

Mechanized meta theory

Unfortunately, the more complicated the behaviour is, the
more error-prone the theory becomes. The literature reveals
broken proofs of subject reduction for several MPST sys-
tems [42], and a flaw of the decidability of subtyping [6]
for asynchronous MPST. All of which are caused by an in-

correct understanding of the (asynchronous) behaviour of
types.

— Castro-Perez et al. PLDI'21

Mechanized in Coq:
> Language definition ~500 LOC, proofs ~ 10,000 LOC

» Small-step asynchronous semantics with threads and buffers
> Safety: threads don’t get stuck (except on receive)

11/13

Mechanized meta theory

Unfortunately, the more complicated the behaviour is, the
more error-prone the theory becomes. The literature reveals
broken proofs of subject reduction for several MPST sys-
tems [42], and a flaw of the decidability of subtyping [6]
for asynchronous MPST. All of which are caused by an in-
correct understanding of the (asynchronous) behaviour of

types.
— Castro-Perez et al. PLDI'21

Mechanized in Coq:

> Language definition ~500 LOC, proofs ~ 10,000 LOC

» Small-step asynchronous semantics with threads and buffers
> Safety: threads don’t get stuck (except on receive)

» Deadlock freedom: no subset of threads stuck on each other

11/13

Mechanized meta theory

Unfortunately, the more complicated the behaviour is, the
more error-prone the theory becomes. The literature reveals
broken proofs of subject reduction for several MPST sys-
tems [42], and a flaw of the decidability of subtyping [6]
for asynchronous MPST. All of which are caused by an in-
correct understanding of the (asynchronous) behaviour of

types.
— Castro-Perez et al. PLDI'21

Mechanized in Coq:

> Language definition ~500 LOC, proofs ~ 10,000 LOC
» Small-step asynchronous semantics with threads and buffers
> Safety: threads don’t get stuck (except on receive)

> Deadlock freedom: no subset of threads stuck on each other
> Leak freedom: no messages left behind

11/13

How to know that you mechanized the right theorem?

12/13

How to know that you mechanized the right theorem?

» The statement deadlock freedom is complex (5 LOC)

> Statement relies on several auxiliary definitions (=100 LOC)
> How do we know that the theorem statement is not wrong?

12/13

How to know that you mechanized the right theorem?

» The statement deadlock freedom is complex (5 LOC)

> Statement relies on several auxiliary definitions (=100 LOC)
> How do we know that the theorem statement is not wrong?

» Prove easy to understand corollary, global progress:
Ife: () and e ~*p then either p = () or 3p”. p ~ p’

12/13

How to know that you mechanized the right theorem?

» The statement deadlock freedom is complex (5 LOC)

> Statement relies on several auxiliary definitions (=100 LOC)
> How do we know that the theorem statement is not wrong?

» Prove easy to understand corollary, global progress:
Ife: () and e ~*p then either p = () or 3p”. p ~ p’

» 1 LOC, no auxiliary definitions

» Sanity check on deadlock freedom statement

12/13

What'’s in the paper

» Full MGPV language definition and semantics
> Asynchronous semantics with buffers
Choice in session types
Recursive types & recursive session types (mutual)
Linear & unrestricted types

vyy

13/13

What'’s in the paper

» Full MGPV language definition and semantics

> Asynchronous semantics with buffers

> Choice in session types

> Recursive types & recursive session types (mutual)
> Linear & unrestricted types

» Multiparty consistency & global types

13/13

What'’s in the paper

» Full MGPV language definition and semantics

> Asynchronous semantics with buffers

> Choice in session types

> Recursive types & recursive session types (mutual)
> Linear & unrestricted types

» Multiparty consistency & global types
» Deadlock freedom proof

> With pictures
> Formal details (with separation logic)

13/13

What'’s in the paper

» Full MGPV language definition and semantics
> Asynchronous semantics with buffers
> Choice in session types
> Recursive types & recursive session types (mutual)
> Linear & unrestricted types
» Multiparty consistency & global types
» Deadlock freedom proof
> With pictures
> Formal details (with separation logic)

» Encoding GV in MPGV

13/13

What'’s in the paper

» Full MGPV language definition and semantics
> Asynchronous semantics with buffers
> Choice in session types
> Recursive types & recursive session types (mutual)
> Linear & unrestricted types
» Multiparty consistency & global types
» Deadlock freedom proof
> With pictures
> Formal details (with separation logic)
» Encoding GV in MPGV

> All theorems mechanized in Coq

13/13

What'’s in the paper

» Full MGPV language definition and semantics
> Asynchronous semantics with buffers
Choice in session types
Recursive types & recursive session types (mutual)
Linear & unrestricted types

vyy

» Multiparty consistency & global types
» Deadlock freedom proof

> With pictures
> Formal details (with separation logic)

» Encoding GV in MPGV

> All theorems mechanized in Coq

Questions?

13/13

