Connectivity Graphs: A Method for Proving
Deadlock Freedom Based on Separation Logic

Jules Jacobs! Robbert Krebbers! Stephanie Balzer?

'Radboud University Nijmegen POPL'22/Iris workshop'22

2Carnegie Mellon University
1/14

Safety in Iris

Iris safety theorem: all threads can always step

2/14

Safety in Iris

Iris safety theorem: all threads can always step
» Spinlock CAS loops can always step...but deadlock not ruled out

2/14

Safety in Iris

Iris safety theorem: all threads can always step
» Spinlock CAS loops can always step...but deadlock not ruled out

We wanted: deadlock-free lIris

2/14

Safety in Iris

Iris safety theorem: all threads can always step
» Spinlock CAS loops can always step...but deadlock not ruled out

We wanted: deadlock-free Iris
We got: progress & preservation style proof of deadlock freedom for session types

» Uses separation logic
» Maybe the techniques help toward deadlock free Iris

2/14

Session types

Message passing concurrency with first-class channels (Honda [1993])

¢ :Nat.?Bool.!(?String.!Nat.End). End

3/14

Session types

Message passing concurrency with first-class channels (Honda [1993])

¢ :Nat.?Bool.!(?String.!Nat.End). End
¢ dual
¢’ : ?Nat.!Bool.?(?String. ! Nat. End). End

3/14

Session types

Message passing concurrency with first-class channels (Honda [1993])

¢ :Nat.?Bool.!(?String.!Nat.End). End
¢ dual
¢’ : ?Nat.!Bool.?(?String. ! Nat. End). End

GV: functional programming with session types
(Gay and Vasconcelos [2010], Wadler [2012])

fork: (s—o1)—5 send: (It.s)xt—os

close : End —o 1 receive: 7t.s—osxt

let ¢ = fork(Ac'. ...receive(c’)...) in send(c,23)...

3/14

What makes session types interesting

Linear session types: cannot copy or delete a channel reference before you are done

4/14

What makes session types interesting

Linear session types: cannot copy or delete a channel reference before you are done

> Required for type safety; mechanized with Actris by Hinrichsen et al.
[2020, 2021] (and by Castro-Perez et al. [2020], Ciccone and Padovani [2020],
Goto et al. [2016], Rouvoet et al. [2020], Thiemann [2019], ...)

4/14

What makes session types interesting

Linear session types: cannot copy or delete a channel reference before you are done
> Required for type safety; mechanized with Actris by Hinrichsen et al.
[2020, 2021] (and by Castro-Perez et al. [2020], Ciccone and Padovani [2020],
Goto et al. [2016], Rouvoet et al. [2020], Thiemann [2019], ...)
» But also guarantees deadlock freedom, global progress; proved by Carbone
et al. [2008, 2010] (and Caires and Pfenning [2010], Lindley and Morris [2015],
Wadler [2012],...)

Not yet mechanized: requires reasoning about graphs

4/14

What makes session types interesting

Linear session types: cannot copy or delete a channel reference before you are done
> Required for type safety; mechanized with Actris by Hinrichsen et al.
[2020, 2021] (and by Castro-Perez et al. [2020], Ciccone and Padovani [2020],
Goto et al. [2016], Rouvoet et al. [2020], Thiemann [2019], ...)
» But also guarantees deadlock freedom, global progress; proved by Carbone
et al. [2008, 2010] (and Caires and Pfenning [2010], Lindley and Morris [2015],
Wadler [2012],...)

Not yet mechanized: requires reasoning about graphs

4/14

Why session types give deadlock freedom

Two owners per channel
» Duality of channel types — no simple deadlocks

> Linear typing maintains acyclicity of ownership structure — no cyclic deadlocks

5/14

Why session types give deadlock freedom

Two owners per channel
» Duality of channel types — no simple deadlocks

> Linear typing maintains acyclicity of ownership structure — no cyclic deadlocks

Even when channels are asynchronous and first-class values:
» dynamically created

sent as messages over channels

>
> stored in data structures
» captured by closures

>

in Turing-complete language (— termination argument doesn't work)

5/14

Why session types give deadlock freedom

Two owners per channel
» Duality of channel types — no simple deadlocks

> Linear typing maintains acyclicity of ownership structure — no cyclic deadlocks

Even when channels are asynchronous and first-class values:
» dynamically created

sent as messages over channels

>
> stored in data structures
» captured by closures

>

in Turing-complete language (— termination argument doesn't work)

Initial direct attempt: proofs goals got too complex.
Graph reasoning intertwined with language specifics.

5/14

Why session types give deadlock freedom

Two owners per channel
» Duality of channel types — no simple deadlocks

> Linear typing maintains acyclicity of ownership structure — no cyclic deadlocks

Even when channels are asynchronous and first-class values:
» dynamically created

sent as messages over channels

>
> stored in data structures
» captured by closures

>

in Turing-complete language (— termination argument doesn't work)

Initial direct attempt: proofs goals got too complex.
Graph reasoning intertwined with language specifics.
Encapsulating the graph reasoning made it manageable.

5/14

Contribution: connectivity graph proof method

This work: connectivity graphs
» Method for factoring out graph reasoning from reasoning about typing
» Mechanized in the Coq proof assistant
» Applied to prove deadlock freedom for feature-rich session-typed language
» Abstract representation of run-time configuration

6/14

Contribution: connectivity graph proof method

This work: connectivity graphs
» Method for factoring out graph reasoning from reasoning about typing
» Mechanized in the Coq proof assistant
» Applied to prove deadlock freedom for feature-rich session-typed language
» Abstract representation of run-time configuration

Run-time configuration p

Threads: {Ty—eq,..., Tg — €5}
Channels: {C; = bufy,..., G5 — bufs}

6/14

Contribution: connectivity graph proof method

This work: connectivity graphs
» Method for factoring out graph reasoning from reasoning about typing
» Mechanized in the Coq proof assistant
» Applied to prove deadlock freedom for feature-rich session-typed language
» Abstract representation of run-time configuration

Run-time configuration p Connectivity graph G

Threads: {T; — eq,..., Tg — €5} ! Cl
Channels: {C; = bufy,..., G5 — bufs}

6/14

Contribution: connectivity graph proof method

This work: connectivity graphs
» Method for factoring out graph reasoning from reasoning about typing
» Mechanized in the Coq proof assistant
» Applied to prove deadlock freedom for feature-rich session-typed language
» Abstract representation of run-time configuration

Run-time configuration p Connectivity graph G

Threads: {T; — eq,..., Tg — €5} ! Cl
Channels: {C; = bufy,..., G5 — bufs}

GEp
wf(p):=3G.GEp

6/14

Connectivity graph proof based on progress and preservation

P1

Connectivity graph proof based on progress and preservation

step
P1 —— P2

Connectivity graph proof based on progress and preservation

step step
P1 P2 P3

Connectivity graph proof based on progress and preservation

step step step
P1 P2 P3 Pa

Connectivity graph proof based on progress and preservation

step step step step?
P1 P2 P3 P4 F--------3 ¥ Ps

Connectivity graph proof based on progress and preservation

step step step step?
P1 P2 P3 P4 F--------3 ¥ Ps

G Ep;

Connectivity graph proof based on progress and preservation

step step step step?
P1 P2 P3 P4 F--------3 ¥ Ps

G Fpy Gy Fp,

[e [
preservation

Connectivity graph proof based on progress and preservation

step step step step?
P1 P2 P3 P4 F--------3 ¥ Ps

G Fpy Gy F ps G3Fps

G G G:
IE preservation 122] preservation 3

Connectivity graph proof based on progress and preservation

step step step step?
P1 P2 P3 P4 F--------3 ¥ Ps

G Ep; G2 Fp2 G3Ep3 Gy Epy

G G Gs| G,
IE preservation 2] preservation L 31 preservation 4

Connectivity graph proof based on progress and preservation

step step step step?
P1 P2 P3 P4 F--------3 ¥ Ps
&
G Ep; G2 Fp2 G3Ep3 Gy Epy S
«0%
Q

G G Gs| G,
IE preservation 2] preservation L 31 preservation 4

7/14

Connectivity graph proof based on progress and preservation

step step step
P1 P2 P3
G Fpy Gy F ps G3Fps
Gy , Gy , Gs ,
preservation preservation preservation

Connectivity graph framework:
» (Cgraph(V, L) data type for acyclic labeled graphs
» Generic construction for wf(p):= W(Pp)
> Parameterized by local separation logic predicate P,(v) for each vertex v € G
> Preservation: graph transformations in separation logic
> Progress: waiting induction principle for Cgraph(V, L)

All generic over vertices V and labels L
7/14

Linear heap typing in separation logic: (cf. Rouvoet [2020]'s definitional interpreters)

le—el:’rl Z2|—e2:772 Zlﬂ22:®

21U22}_(€1,€2):T1 X To

8/14

Linear heap typing in separation logic: (cf. Rouvoet [2020]'s definitional interpreters)

ke i1y Yobe:T, TN, =0 €Ty * €Ty
= — - ° %
LU, F (e,)T X T (e1,€) 71 X T3

8/14

Linear heap typing in separation logic: (cf. Rouvoet [2020]'s definitional interpreters)

ke i1y Yobe:T, TN, =0 €Ty * €Ty
e e ————
EIUZQ}_(GI,Gz):TIX’Tz (el,e2)2T1XT2
% = {Chan(a) — (t,s)} - own(Chan(a) — (t,s))
*
Th#a s #a, s

8/14

Linear heap typing in separation logic: (cf. Rouvoet [2020]'s definitional interpreters)

ke i1y Yobe:T, TN, =0 €Ty * €Ty
e
iU, F (e, e): Ty X T) (e1,€): 71X 7T,
% = {Chan(a) — (t,s)} - own(Chan(a) — (t,s))
*
Th#a s #a, s

For vertex v in the graph, separation logic resource ~ = OutEdges(v)

8/14

Linear heap typing in separation logic: (cf. Rouvoet [2020]'s definitional interpreters)

ke i1y Yobe:T, TN, =0 €Ty * €Ty
e e ————
EIUZQ}_(Gl,ez):TIX’Tz (el,e2)2T1XT2
% = {Chan(a) — (t,s)} - own(Chan(a) — (t,s))
*
Th#a s #a, s

For vertex v in the graph, separation logic resource ~ = OutEdges(v)

Lemmas in separation logic:

(ZFKle]:B) &= FAZ, 5. (B NS =0A(E=Z,US)A (S Fe A)A
Ve, 55 (ZonNT3 =0)A (S ke 1 A) > (S, U3+ K[e']: B)

8/14

Linear heap typing in separation logic: (cf. Rouvoet [2020]'s definitional interpreters)

ke i1y Yobe:T, TN, =0 €Ty * €Ty
e
iU, F (e, e): Ty X T) (e1,€): 71X 7T,
% = {Chan(a) — (t,s)} - own(Chan(a) — (t,s))
*
Th#a s #a, s

For vertex v in the graph, separation logic resource ~ = OutEdges(v)

Lemmas in separation logic:
(ZFKle]:B) &= FAZ, 5. (B NS =0A(E=Z,US)A (S Fe A)A
Ve, 25 (ZonNZ3 =0)A(ZF e 1 A) - (B, U3+ K[e]: B)
=

(K[e]: B) 4+ 3FA. (e: A)xVe'. (e': A) = (K[e']: B)

We use the Iris proof mode to reason in separation logic (Krebbers et al. [2017])

8/14

Preservation via local graph transformations

Preserves:
> Acyclicity
> Local predicates P,(v)
used for wf(P,)

close(c

@O0

9/14

Preservation via local graph transformations

Preserves:
> Acyclicity
> Local predicates P,(v)
used for wf(P,)

In separation logic: if

Po(Ty1)* (own(C = s) = P,(C))
l_
(own(C = s") = P,/(Ty)) % P,/ (C)

then: W(Pp) —>W(Pp/)
@@ Explained in our paper!

close(c

@O0

9/14

Progress via waiting induction

Connectivity graph with waiting dependencies (»)
derived from run-time configuration

10/14

Progress via waiting induction

Connectivity graph with waiting dependencies (»)
derived from run-time configuration

Lemma (Waiting induction)

Let R(v,w) be any relation on the vertices. To prove P(v), we may assume P(w) for
all w such that v— w and R(v,w), or w— v and ~R(w, v)

10/14

Mechanization

Mechanization in Coq:
» Generic Cgraph(V, L) library: 4999 LOC
» Channels + unrestricted & recursive types language definition: 451 LOC
» Language specific deadlock and leak freedom proof: 1688 LOC

uGV: linear A-calculus + fork with single-shot atomic exchange
> Global progress & deadlock freedom in Coq (1478 LOC)

11/14

https://github.com/julesjacobs/cgraphs

Mechanization

Mechanization in Coq:
» Generic Cgraph(V, L) library: 4999 LOC
» Channels + unrestricted & recursive types language definition: 451 LOC
» Language specific deadlock and leak freedom proof: 1688 LOC

uGV: linear A-calculus + fork with single-shot atomic exchange
> Global progress & deadlock freedom in Coq (1478 LOC)

MPGV: linear A-calculus with multiparty session types
> Global progress & deadlock freedom in Coq (10400 LOC)

https://github.com/julesjacobs/cgraphs

11/14

https://github.com/julesjacobs/cgraphs

Lessons learnt for deadlock-free Iris

» Benchmark: deadlock freedom for session types using semantic typing with Actris

12/14

julesjacobs@gmail.com

Lessons learnt for deadlock-free Iris

» Benchmark: deadlock freedom for session types using semantic typing with Actris

> In general, memory leak freedom and deadlock freedom are equally hard (thanks
to POPL reviewers)

12/14

julesjacobs@gmail.com

Lessons learnt for deadlock-free Iris

» Benchmark: deadlock freedom for session types using semantic typing with Actris

> In general, memory leak freedom and deadlock freedom are equally hard (thanks
to POPL reviewers)

» Graph acyclicity is key for higher-order deadlock freedom

12/14

julesjacobs@gmail.com

Lessons learnt for deadlock-free Iris

» Benchmark: deadlock freedom for session types using semantic typing with Actris

> In general, memory leak freedom and deadlock freedom are equally hard (thanks
to POPL reviewers)

» Graph acyclicity is key for higher-order deadlock freedom
» Separation logic is well-matched with graph acyclicity

12/14

julesjacobs@gmail.com

Lessons learnt for deadlock-free Iris

» Benchmark: deadlock freedom for session types using semantic typing with Actris

> In general, memory leak freedom and deadlock freedom are equally hard (thanks
to POPL reviewers)

» Graph acyclicity is key for higher-order deadlock freedom
» Separation logic is well-matched with graph acyclicity
» Cannot allow Iris invariants: need to control resource transfer

12/14

julesjacobs@gmail.com

Lessons learnt for deadlock-free Iris

» Benchmark: deadlock freedom for session types using semantic typing with Actris

> In general, memory leak freedom and deadlock freedom are equally hard (thanks
to POPL reviewers)

» Graph acyclicity is key for higher-order deadlock freedom

» Separation logic is well-matched with graph acyclicity

» Cannot allow Iris invariants: need to control resource transfer

Ideas? Questions?

julesjacobs@gmail.com

12/14

julesjacobs@gmail.com

Extra slides

13/14

Stronger deadlock and leak freedom result

Global progress is the standard notion that people use
Our POPL reviewers: Can your method prove something stronger?

14 /14

Stronger deadlock and leak freedom result

Global progress is the standard notion that people use
Our POPL reviewers: Can your method prove something stronger?

Partial deadlock: a set S of threads and channels such that:
1. All threads in S are blocked on a channel in S

2. No references to channels in S from outside S

14 /14

Stronger deadlock and leak freedom result

Global progress is the standard notion that people use
Our POPL reviewers: Can your method prove something stronger?

Partial deadlock: a set S of threads and channels such that:
1. All threads in S are blocked on a channel in S

2. No references to channels in S from outside S

Strong reachability:
1. A channel is reachable if it is referenced by a reachable channel or thread

2. A thread is reachable if it can step, or is blocked on a reachable channel

14 /14

Stronger deadlock and leak freedom result

Global progress is the standard notion that people use
Our POPL reviewers: Can your method prove something stronger?

Partial deadlock: a set S of threads and channels such that:
1. All threads in S are blocked on a channel in S
2. No references to channels in S from outside S

Strong reachability:
1. A channel is reachable if it is referenced by a reachable channel or thread

2. A thread is reachable if it can step, or is blocked on a reachable channel

Lemma. All threads and channels are reachable <= no partial deadlock

14 /14

Stronger deadlock and leak freedom result

Global progress is the standard notion that people use
Our POPL reviewers: Can your method prove something stronger?

Partial deadlock: a set S of threads and channels such that:
1. All threads in S are blocked on a channel in S
2. No references to channels in S from outside S

Strong reachability:
1. A channel is reachable if it is referenced by a reachable channel or thread

2. A thread is reachable if it can step, or is blocked on a reachable channel

Lemma. All threads and channels are reachable <= no partial deadlock
Lemma. Any thread or channel is reachable = global progress

14 /14

Stronger deadlock and leak freedom result

Global progress is the standard notion that people use
Our POPL reviewers: Can your method prove something stronger?

Partial deadlock: a set S of threads and channels such that:
1. All threads in S are blocked on a channel in S
2. No references to channels in S from outside S

Strong reachability:
1. A channel is reachable if it is referenced by a reachable channel or thread

2. A thread is reachable if it can step, or is blocked on a reachable channel

Lemma. All threads and channels are reachable <= no partial deadlock
Lemma. Any thread or channel is reachable = global progress
Theorem. For well-typed initial programs, no partial deadlock occurs

14 /14

L. Caires and F. Pfenning. Session types as intuitionistic linear propositions. In
CONCUR, volume 6269 of LNCS, 2010. doi: 10.1007/978-3-642-15375-4\ 16.
URL https://doi.org/10.1007/978-3-642-15375-4_16.

D. Castro-Perez, F. Ferreira, and N. Yoshida. EMTST: engineering the meta-theory
of session types. In TACAS (2), volume 12079 of LNCS, pages 278-285, 2020. doi:
10.1007/978-3-030-45237-7\ 17. URL
https://doi.org/10.1007/978-3-030-45237-7_17.

L. Ciccone and L. Padovani. A dependently typed linear m-calculus in agda. In PPDP,
pages 8:1-8:14, 2020. doi: 10.1145/3414080.3414109. URL
https://doi.org/10.1145/3414080.3414109.

S. J. Gay and V. T. Vasconcelos. Linear type theory for asynchronous session types.
JFP, 20(1):19-50, 2010. doi: 10.1017/S0956796809990268. URL
https://doi.org/10.1017/50956796809990268.

M. A. Goto, R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely. An extensible
approach to session polymorphism. MSCS, 26(3):465-509, 2016. doi:
10.1017/50960129514000231. URL
https://doi.org/10.1017/50960129514000231.

14 /14

https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-030-45237-7_17
https://doi.org/10.1145/3414080.3414109
https://doi.org/10.1017/S0956796809990268
https://doi.org/10.1017/S0960129514000231

J. K. Hinrichsen, J. Bengtson, and R. Krebbers. Actris: Session-type based reasoning
in separation logic. PACMPL, 4(POPL), Dec. 2020. doi: 10.1145/3371074. URL
https://doi.org/10.1145/3371074.

J. K. Hinrichsen, D. Louwrink, R. Krebbers, and J. Bengtson. Machine-checked
semantic session typing. In CPP, pages 178-198, 2021. doi:
10.1145/3437992.3439914. URL
https://doi.org/10.1145/3437992.3439914.

K. Honda. Types for dyadic interaction. In CONCUR, volume 715 of LNCS, pages
509-523, 1993. doi: 10.1007/3-540-57208-2_35. URL
https://doi.org/10.1007/3-540-57208-2_35.

R. Krebbers, A. Timany, and L. Birkedal. Interactive proofs in higher-order concurrent

separation logic. In POPL, pages 205-217, 2017. doi: 10.1145/3009837.3009855.

URL https://doi.org/10.1145/3009837.3009855.
S. Lindley and J. G. Morris. A semantics for propositions as sessions. In ESOP,

volume 9032 of LNCS, pages 560-584, 2015. doi: 10.1007/978-3-662-46669-8 23.

URL https://doi.org/10.1007/978-3-662-46669-8_23.
A. Rouvoet, C. Bach Poulsen, R. Krebbers, and E. Visser. Intrinsically-typed
definitional interpreters for linear, session-typed languages. In CPP, 2020. ISBN

14 /14

https://doi.org/10.1145/3371074
https://doi.org/10.1145/3437992.3439914
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1007/978-3-662-46669-8_23

9781450370974. doi: 10.1145/3372885.3373818. URL
https://doi.org/10.1145/3372885.3373818.

P. Thiemann. Intrinsically-typed mechanized semantics for session types. In PPDP,
2019. ISBN 9781450372497. doi: 10.1145/3354166.3354184. URL
https://doi.org/10.1145/3354166.3354184.

P. Wadler. Propositions as sessions. In ICFP, pages 273-286, 2012. doi:
10.1145/2364527.2364568. URL
https://doi.org/10.1145/2364527.2364568.

14 /14

https://doi.org/10.1145/3372885.3373818
https://doi.org/10.1145/3354166.3354184
https://doi.org/10.1145/2364527.2364568

	References

