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Safety in Iris

Iris safety theorem: all threads can always step
» Spinlock CAS loops can always step...but deadlock not ruled out

We wanted: deadlock-free Iris
We got: progress & preservation style proof of deadlock freedom for session types

» Uses separation logic
» Maybe the techniques help toward deadlock free Iris

2/14



Session types

Message passing concurrency with first-class channels (Honda [1993])
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Session types

Message passing concurrency with first-class channels (Honda [1993])

¢ :Nat.?Bool.!(?String.!Nat.End). End
¢ dual
¢’ : ?Nat.!Bool.?(?String. ! Nat. End). End

GV: functional programming with session types
(Gay and Vasconcelos [2010], Wadler [2012])

fork: (s—o1)—5 send: (It.s)xt—os

close : End —o 1 receive: 7t.s—osxt

let ¢ = fork(Ac'. ...receive(c’)...) in send(c,23)...
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Why session types give deadlock freedom

Two owners per channel
» Duality of channel types — no simple deadlocks

> Linear typing maintains acyclicity of ownership structure — no cyclic deadlocks

Even when channels are asynchronous and first-class values:
» dynamically created

sent as messages over channels

>
> stored in data structures
» captured by closures

>

in Turing-complete language (— termination argument doesn't work)

Initial direct attempt: proofs goals got too complex.
Graph reasoning intertwined with language specifics.
Encapsulating the graph reasoning made it manageable.
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Contribution: connectivity graph proof method

This work: connectivity graphs
» Method for factoring out graph reasoning from reasoning about typing
» Mechanized in the Coq proof assistant
» Applied to prove deadlock freedom for feature-rich session-typed language
» Abstract representation of run-time configuration

Run-time configuration p Connectivity graph G

Threads: {T; — eq,..., Tg — €5} ! Cl
Channels: {C; = bufy,..., G5 — bufs}

GEp
wf(p):=3G.GEp
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Connectivity graph proof based on progress and preservation

step step step step?
P1 P2 P3 P4 F--------3 ¥ Ps
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G Ep; G2 Fp2 G3Ep3 Gy Epy S
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Connectivity graph proof based on progress and preservation

step step step
P1 P2 P3
G Fpy Gy F ps G3Fps
Gy , Gy , Gs ,
preservation preservation preservation

Connectivity graph framework:
» (Cgraph(V, L) data type for acyclic labeled graphs
» Generic construction for wf(p):= W(Pp)
> Parameterized by local separation logic predicate P,(v) for each vertex v € G
> Preservation: graph transformations in separation logic
> Progress: waiting induction principle for Cgraph(V, L)

All generic over vertices V and labels L
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Linear heap typing in separation logic: (cf. Rouvoet [2020]'s definitional interpreters)
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ke i1y Yobe:T, TN, =0 €Ty * €Ty
e
iU, F (e, e): Ty X T) (e1,€): 71X 7T,
% = {Chan(a) — (t,s)} - own(Chan(a) — (t,s))
*
Th#a s #a, s

For vertex v in the graph, separation logic resource ~ = OutEdges(v)

Lemmas in separation logic:
(ZFKle]:B) &= FAZ, 5. (B NS =0A(E=Z,US)A (S Fe A)A
Ve, 25 (ZonNZ3 =0)A(ZF e 1 A) - (B, U3+ K[e]: B)
=

(K[e]: B) 4+ 3FA. (e: A)xVe'. (e': A) = (K[e']: B)

We use the Iris proof mode to reason in separation logic (Krebbers et al. [2017])
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Preservation via local graph transformations

Preserves:
> Acyclicity
> Local predicates P,(v)
used for wf(P,)

close(c
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Preservation via local graph transformations

Preserves:
> Acyclicity
> Local predicates P,(v)
used for wf(P,)

In separation logic: if

Po(Ty1)* (own(C = s) = P,(C))
l_
(own(C = s") = P,/(Ty)) % P,/ (C)

then: W(Pp) —>W(Pp/)
@@ Explained in our paper!

close(c

@O0
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Progress via waiting induction

Connectivity graph with waiting dependencies (»)
derived from run-time configuration
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Progress via waiting induction

Connectivity graph with waiting dependencies (»)
derived from run-time configuration

Lemma (Waiting induction)

Let R(v,w) be any relation on the vertices. To prove P(v), we may assume P(w) for
all w such that v— w and R(v,w), or w— v and ~R(w, v)
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Mechanization

Mechanization in Coq:
» Generic Cgraph(V, L) library: 4999 LOC
» Channels + unrestricted & recursive types language definition: 451 LOC
» Language specific deadlock and leak freedom proof: 1688 LOC

uGV: linear A-calculus + fork with single-shot atomic exchange
> Global progress & deadlock freedom in Coq (1478 LOC)

11/14


https://github.com/julesjacobs/cgraphs

Mechanization

Mechanization in Coq:
» Generic Cgraph(V, L) library: 4999 LOC
» Channels + unrestricted & recursive types language definition: 451 LOC
» Language specific deadlock and leak freedom proof: 1688 LOC

uGV: linear A-calculus + fork with single-shot atomic exchange
> Global progress & deadlock freedom in Coq (1478 LOC)

MPGV: linear A-calculus with multiparty session types
> Global progress & deadlock freedom in Coq (10400 LOC)

https://github.com/julesjacobs/cgraphs
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Lessons learnt for deadlock-free Iris

» Benchmark: deadlock freedom for session types using semantic typing with Actris

> In general, memory leak freedom and deadlock freedom are equally hard (thanks
to POPL reviewers)

» Graph acyclicity is key for higher-order deadlock freedom

» Separation logic is well-matched with graph acyclicity

» Cannot allow Iris invariants: need to control resource transfer

Ideas? Questions?

julesjacobs@gmail.com
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Extra slides
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Stronger deadlock and leak freedom result

Global progress is the standard notion that people use
Our POPL reviewers: Can your method prove something stronger?

Partial deadlock: a set S of threads and channels such that:
1. All threads in S are blocked on a channel in S
2. No references to channels in S from outside S

Strong reachability:
1. A channel is reachable if it is referenced by a reachable channel or thread

2. A thread is reachable if it can step, or is blocked on a reachable channel

Lemma. All threads and channels are reachable <= no partial deadlock
Lemma. Any thread or channel is reachable = global progress
Theorem. For well-typed initial programs, no partial deadlock occurs
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