## Paradoxes of Probabilistic Programming

and how to condition on events of measure zero with infinitesimal probabilities (to appear at POPL'21)

Jules Jacobs<br>TU Delft $\mapsto$ Radboud University Nijmegen<br>julesjacobs@gmail.com

November 25, 2020

## Probabilistic programming

- Domain specific language for statistical and machine learning models
- Normal programming language extended with rand, observe, and run


## Probabilistic programming

## Example:

- Men's height is distributed according to $\operatorname{Normal}(1.8,0.5)$ meters
- Women's height is distributed according to Normal( $1.7,0.5$ ) meters
- A scientist randomly samples a man and a woman and compares their height
- The scientist tells us that the heights are equal

Question: What's the expected value of the height in this situation?

## Probabilistic programming

## Example:

- Men's height is distributed according to $\operatorname{Normal}(1.8,0.5)$ meters
- Women's height is distributed according to Normal( $1.7,0.5$ ) meters
- A scientist randomly samples a man and a woman and compares their height
- The scientist tells us that the heights are equal

Question: What's the expected value of the height in this situation?

```
function meters(){
    h = rand(Normal(1.7, 0.5))
    observe(Normal(1.8, 0.5), h)
    return h
}
samples = run(meters, 1000)
estimate = average(samples)
```

Answer: $\approx 1.75$

## Probabilistic programming

## Example:

- Men's height is distributed according to $\operatorname{Normal}(1.8,0.5)$ meters
- Women's height is distributed according to Normal( $1.7,0.5$ ) meters
- A scientist randomly samples a man and a woman and compares their height
- The scientist tells us that the heights are equal

Question: What's the expected value of the height in this situation?

```
function meters(){
    h = rand(Normal (1.7, 0.5))
    observe(Normal(1.8, 0.5), h)
    return h
}
samples = run(meters, 1000)
estimate = average(samples)
```

```
function centimeters(){
    h = rand(Normal(170, 50))
    observe(Normal(180, 50), h)
    return h
}
samples = run(meters, 1000)
estimate = average(samples)
```

Answer: $\approx 1.75$
Answer: $\approx 175$

## Paradox 1

Suppose the scientist is lazy, and only does the measurement half of the time...

## Paradox 1

Suppose the scientist is lazy, and only does the measurement half of the time...

## Meters:

```
h = rand(Normal(1.7, 0.5))
if(flip(0.5)){
    observe(Normal(1.8, 0.5), h)
}
return h
```

Answer: $\approx 1.721$

## Paradox 1

Suppose the scientist is lazy, and only does the measurement half of the time...

## Meters:

```
h = rand(Normal(1.7, 0.5))
if(flip(0.5)){
    observe(Normal(1.8, 0.5), h)
}
return h
```

Answer: $\approx 1.721$

## Centimeters:

```
h = rand(Normal (170, 50))
if(flip(0.5)){
    observe(Normal(180, 50), h)
}
return h
Answer: \(\approx 170.2\)
```

- The answer depends on whether the scientist uses meters or centimeters!


## Paradox 1

Suppose the scientist is lazy, and only does the measurement half of the time...

## Meters:

```
h = rand(Normal(1.7, 0.5))
if(flip(0.5)){
    observe(Normal(1.8, 0.5), h)
}
return h
```

Answer: $\approx 1.721$

## Centimeters:

```
h = rand(Normal (170, 50))
if(flip(0.5)){
    observe(Normal(180, 50), h)
}
return h
Answer: \(\approx 170.2\)
```

- The answer depends on whether the scientist uses meters or centimeters!
- Happens if we run this with importance sampling in Anglican


## Paradox 1

Suppose the scientist is lazy, and only does the measurement half of the time...

## Meters:

```
h = rand(Normal(1.7, 0.5))
if(flip(0.5)){
    observe(Normal(1.8, 0.5), h)
}
return h
```

Answer: $\approx 1.721$

## Centimeters:

```
h = rand(Normal (170, 50))
if(flip(0.5)){
    observe(Normal(180, 50), h)
}
return h
Answer: \(\approx 170.2\)
```

- The answer depends on whether the scientist uses meters or centimeters!
- Happens if we run this with importance sampling in Anglican
- The issue is fundamental and not limited to Anglican


## Paradox 1

Suppose the scientist is lazy, and only does the measurement half of the time...

## Meters:

```
h = rand(Normal(1.7, 0.5))
if(flip(0.5)){
    observe(Normal(1.8, 0.5),
}
return h
```

Answer: $\approx 1.721$

## Centimeters:

```
h = rand(Normal(170, 50))
if(flip(0.5)){
    observe(Normal(180, 50), h)
}
return h
Answer: \approx 170.2
```

- The answer depends on whether the scientist uses meters or centimeters!
- Happens if we run this with importance sampling in Anglican
- The issue is fundamental and not limited to Anglican
- Even happens in formal operational semantics (e.g. Commutative or Quasi-Borel)


## Paradox 1

Suppose the scientist is lazy, and only does the measurement half of the time...

## Meters:

```
h = rand(Normal(1.7, 0.5))
if(flip(0.5)){
    observe(Normal(1.8, 0.5),
}
return h
```

Answer: $\approx 1.721$

## Centimeters:

```
h = rand(Normal(170, 50))
if(flip(0.5)){
    observe(Normal(180, 50), h)
}
return h
Answer: \approx 170.2
```

- The answer depends on whether the scientist uses meters or centimeters!
- Happens if we run this with importance sampling in Anglican
- The issue is fundamental and not limited to Anglican
- Even happens in formal operational semantics (e.g. Commutative or Quasi-Borel)
- Unclear what the answer should be, or whether this program should be disallowed


## Paradox 2

Objection: you shouldn't do observe a variable number of times based on coin flip
Suppose the scientist is drunk, and measures the weight half of the time...

## Paradox 2

Objection: you shouldn't do observe a variable number of times based on coin flip
Suppose the scientist is drunk, and measures the weight half of the time...

```
h = rand(Normal(1.7, 0.5))
w = rand(Normal (60, 10))
if(flip(0.5)){
    observe(Normal(1.8, 0.5), h)
}else{
    observe(Normal(70, 10), w)
}
return h
Answer: \approx 1.75
```


## Paradox 2

Objection: you shouldn't do observe a variable number of times based on coin flip

## Suppose the scientist is drunk, and measures the weight half of the time...

```
h = rand(Normal(1.7, 0.5))
w = rand(Normal (60, 10))
if(flip(0.5)){
    observe(Normal(1.8, 0.5), h)
}else{
    observe(Normal(70, 10), w)
}
return h
Answer: \approx 1.75
```

```
h = rand(Normal (170, 50))
```

h = rand(Normal (170, 50))
w = rand(Normal (60, 10))
w = rand(Normal (60, 10))

```
if(flip(0.5)){
```

if(flip(0.5)){
observe(Normal(180, 50), h)
observe(Normal(180, 50), h)
}else{
}else{
observe(Normal(70, 10), w)
observe(Normal(70, 10), w)
}
}
return h
return h
Answer: \approx 170

```
Answer: \approx 170
```

- The same number of observes regardless of the outcome of the coin flip
- The output still depends on whether we use meters or centimeters


## Paradox 3

Objection: you shouldn't do observe inside a conditional
Suppose the scientist uses a ruler marked in log scale...

## Paradox 3

Objection: you shouldn't do observe inside a conditional
Suppose the scientist uses a ruler marked in log scale...
Original program:

```
h = rand(Normal(1.7,0.5))
observe(Normal(1.8,0.5),h)
return h
```

Answer: 1.75

## Paradox 3

Objection: you shouldn't do observe inside a conditional
Suppose the scientist uses a ruler marked in log scale...

## Original program:

```
h = rand(Normal(1.7,0.5))
observe(Normal(1.8,0.5),h)
return h
```

Answer: 1.75

## Logarithmic ruler program:

```
H = rand(LogNormal(1.7,0.5))
observe(LogNormal(1.8,0.5),H)
return log(H)
```

Answer: 1.62

- Whether we use linear scale or log scale shouldn't matter, just like meters or centimeters shouldn't matter


## Paradox 3

Objection: you shouldn't do observe inside a conditional
Suppose the scientist uses a ruler marked in log scale...

## Original program:

```
h = rand(Normal(1.7,0.5))
observe(Normal(1.8,0.5),h)
return h
```

Answer: 1.75

## Logarithmic ruler program:

```
H = rand(LogNormal(1.7,0.5))
observe(LogNormal(1.8,0.5),H)
return log(H)
```

Answer: 1.62

- Whether we use linear scale or log scale shouldn't matter, just like meters or centimeters shouldn't matter
- No conditionals at all, but the output still depends on the scale we use


## Paradox 3

Objection: you shouldn't do observe inside a conditional
Suppose the scientist uses a ruler marked in log scale...

## Original program:

```
h = rand(Normal (1.7,0.5))
observe(Normal(1.8,0.5),h)
return h
```

Answer: 1.75

## Logarithmic ruler program:

```
H = rand(LogNormal(1.7,0.5))
observe(LogNormal(1.8,0.5),H)
return log(H)
```

Answer: 1.62

- Whether we use linear scale or log scale shouldn't matter, just like meters or centimeters shouldn't matter
- No conditionals at all, but the output still depends on the scale we use
- What do probabilistic programs really mean?


## Paradox 3

Objection: you shouldn't do observe inside a conditional
Suppose the scientist uses a ruler marked in log scale...

## Original program:

```
h = rand(Normal (1.7,0.5))
observe(Normal(1.8,0.5),h)
return h
```

Answer: 1.75

## Logarithmic ruler program:

```
H = rand(LogNormal(1.7,0.5))
observe(LogNormal(1.8,0.5),H)
return log(H)
```

Answer: 1.62

- Whether we use linear scale or log scale shouldn't matter, just like meters or centimeters shouldn't matter
- No conditionals at all, but the output still depends on the scale we use
- What do probabilistic programs really mean?
- What does probililistic conditioning really mean?


## Paradox 3

Objection: you shouldn't do observe inside a conditional
Suppose the scientist uses a ruler marked in log scale...

## Original program:

```
h = rand(Normal (1.7,0.5))
observe(Normal(1.8,0.5),h)
return h
```

Answer: 1.75

## Logarithmic ruler program:

```
H = rand(LogNormal(1.7,0.5))
observe(LogNormal(1.8,0.5),H)
return log(H)
```

Answer: 1.62

- Whether we use linear scale or log scale shouldn't matter, just like meters or centimeters shouldn't matter
- No conditionals at all, but the output still depends on the scale we use
- What do probabilistic programs really mean?
- What does probililistic conditioning really mean?
- Related to the Borel-Komolgorov paradox


## Overview

## Problem:

- Probabilistic programs are not invariant under parameter transformations
- It's not clear what observe really means


## Overview

## Problem:

- Probabilistic programs are not invariant under parameter transformations
- It's not clear what observe really means


## Key ideas:

1. Figure out what observe should do, by analogy with the discrete case
2. Change the language: observe conditions on intervals instead of points
3. Take interval width to be infinitesimally small to condition on measure zero events

## Overview

## Problem:

- Probabilistic programs are not invariant under parameter transformations
- It's not clear what observe really means


## Key ideas:

1. Figure out what observe should do, by analogy with the discrete case
2. Change the language: observe conditions on intervals instead of points
3. Take interval width to be infinitesimally small to condition on measure zero events

## Result:

- New language is invariant under arbitrary parameter transformations
- Programs have clear probabilistic meaning via rejection sampling
- Implemented as a DSL in Julia


## Probabilistic programming 101: manual rejection sampling

Someone: "I rolled three dice $x, y, z \in\{1,2,3,4,5,6\}$ and observed that $x+y=z$."
What's the probability distribution of $x$ now?

## Probabilistic programming 101: manual rejection sampling

Someone: "I rolled three dice $x, y, z \in\{1,2,3,4,5,6\}$ and observed that $x+y=z$."
What's the probability distribution of $x$ now? Use rejection sampling:

```
samples = []
for(i in 1..1000){
    x = rand(DiscreteUniform(1,6))
    y = rand(DiscreteUniform (1,6))
    z = rand(DiscreteUniform (1, 6))
    if(z == x + y){
        samples.append(x)
    }
}
```


## Probabilistic programming 101: manual rejection sampling

Someone: "I rolled three dice $x, y, z \in\{1,2,3,4,5,6\}$ and observed that $x+y=z$."
What's the probability distribution of $x$ now? Use rejection sampling:

```
samples = []
for(i in 1..1000){
    x = rand(DiscreteUnif,
    y = rand(DiscreteUnif,
    z = rand(DiscreteUnif,
    if(z == x + y){
        samples.append(x)
    }
}
```



## Probabilistic programming 101: manual rejection sampling

Someone: "I rolled three dice $x, y, z \in\{1,2,3,4,5,6\}$ and observed that $x+y=z$."
What's the probability distribution of $x$ now? Use rejection sampling:

```
samples = []
for(i in 1..1000){
    x = rand(DiscreteUnif,
    y = rand(DiscreteUnif,
    z = rand(DiscreteUnif،
    if(z == x + y){
        samples.append(x)
    }
}
```



## Probabilistic programming 101: manual rejection sampling

Someone: "I rolled three dice $x, y, z \in\{1,2,3,4,5,6\}$ and observed that $x+y=z$."
What's the probability distribution of $x$ now? Use rejection sampling:

```
samples = []
for(i in 1..1000){
    x = rand(DiscreteUnif
    y = rand(DiscreteUnif,
    z = rand(DiscreteUnif،
    if(z == x + y){
        samples.append(x)
    }
}
```



## Probabilistic programming 101: manual rejection sampling

Someone: "I rolled three dice $x, y, z \in\{1,2,3,4,5,6\}$ and observed that $x+y=z$."
What's the probability distribution of $x$ now? Use rejection sampling:

```
samples = []
for(i in 1..1000){
    x = rand(DiscreteUnif,
    y = rand(DiscreteUnif,
    z = rand(DiscreteUnif,
    if(z == x + y){
        samples.append(x)
    }
}
```



## Probabilistic programming 101: manual rejection sampling

Someone: "I rolled three dice $x, y, z \in\{1,2,3,4,5,6\}$ and observed that $x+y=z$."
What's the probability distribution of $x$ now? Use rejection sampling:

```
samples = []
for(i in 1..1000){
    x = rand(DiscreteUnif،
    y = rand(DiscreteUnif,
    z = rand(DiscreteUnif,
    if(z == x + y){
        samples.append(x)
    }
}
```



Key idea of PP: answer probabilistic inference questions by repeated simulation + filtering

## Probabilistic programming 101: manual rejection sampling

Someone: "I rolled three dice $x, y, z \in\{1,2,3,4,5,6\}$ and observed that $x+y=z$."
What's the probability distribution of $x$ now? Use rejection sampling:

```
samples = []
for(i in 1..1000){
    x = rand(DiscreteUnif,
    y = rand(DiscreteUnif,
    z = rand(DiscreteUnif,
    if(z == x + y){
        samples.append(x)
    }
}
```



Key idea of PP: answer probabilistic inference questions by repeated simulation + filtering $\Longrightarrow$ Probabilistic Programming Language $=$ DSL for probabilistic simulations

## Probabilistic programming 101: DSL for rejection sampling

## Probabilistic programming language:

- Normal programming language + rand (D)
- observe(b) - filtering/conditioning
- run(func, k) - run simulation
func () $k$ times, return array of samples


## Probabilistic programming 101: DSL for rejection sampling

## Probabilistic programming language:

- Normal programming language + rand (D)
- observe(b) - filtering/conditioning
- run(func, k) - run simulation
func () $k$ times, return array of samples

```
function threeDice(){
    x = rand(DiscreteUniform(1,6))
    y = rand(DiscreteUniform(1,6))
    z = rand(DiscreteUniform(1,6))
    observe(z == x + y)
    return x
}
samples = run(threeDice, 1000)
```


## Probabilistic programming 101: DSL for rejection sampling

## Probabilistic programming language:

- Normal programming language + rand (D)
- observe(b) - filtering/conditioning
- run(func, k) - run simulation func () $k$ times, return array of samples

```
function threeDice(){
    x = rand(DiscreteUniform(1,6))
    y = rand(DiscreteUniform(1,6))
    z = rand(DiscreteUniform(1,6))
    observe(z == x + y)
    return x
}
samples = run(threeDice, 1000)
```

```
weight = 1
function observe(b){
    if(!b) weight = 0
}
function run(func, k){
    samples = []
    for(i in 1..k){
        weight = 1
        result = func()
        if(weight == 1){
            samples.append(result)
        }
    }
    return samples
}
```


## Probabilistic programming 101: DSL for rejection sampling

## Probabilistic programming language:

DSL implementation:

- Normal programming language -


```
r.aimh+ = 1
```

- observe(b) - filtering/conditiol
- run(func, k) - run simulation func () $k$ times, return array of

```
function threeDice(){
```

    \(x=r a n d(D i s c r e t e U n i f o r\)
    \(y=r a n d(D i s c r e t e U n i f o r\)
    \(z=r a n d(D i s c r e t e U n i f o r\)
    observe ( \(z==x+y\) )
    return \(x\)
    \}

samples $=$ run(threeDice, 1000)
\}

Probabilistic programming 101

```
function multiDice(){
    x = rand(DiscreteUniform(1,6))
    for(i in 1:x){
        y = rand(DiscreteUniform(1,6))
        observe(rand(DiscreteUniform(1,y)) == 3)
    }
    observe(rand(DiscreteUniform(1,6))+x == 5)
    return x
}
samples = run(multiDice, 1000)
```


## Probabilistic programming 101

```
function multiDice(){
    x = rand(DiscreteUniform(1,6))
    for(i in 1:x){
        y = rand(DiscreteUniform(1,6))
        observe(rand(DiscreteUniform(1,y)) == 3)
    }
    observe(rand(DiscreteUniform(1,6))+x == 5)
    return x
}
samples = run(multiDice, 1000)
```


## Probabilistic programming 101

```
function multiDice(){
    x = rand(DiscreteUniform(1,6))
    for(i in 1:x){
        y = rand(DiscreteUniform(1,6))
        observe(rand(DiscreteUniform(1,y)) == 3)
    }
    observe(rand(DiscreteUniform(1,6))+x == 5)
    return x
}
samples = run(multiDice, 1000)
```



Problem: most samples get rejected $\Longrightarrow$ convergence is slow

## Probabilistic programming 101

```
function multiDice(){
    x = rand(DiscreteUniform(1,6))
    for(i in 1:x){
        y = rand(DiscreteUniform(1,6))
        observe(rand(DiscreteUniform(1,y)) == 3)
    }
    observe(rand(DiscreteUniform(1,6))+x == 5)
    return x
}
samples = run(multiDice, 1000)
```



Problem: most samples get rejected $\Longrightarrow$ convergence is slow
Standard solution: importance sampling

- change observe (rand (D) == x) $\mapsto$ observe(D, x)
- function observe(D,x)\{ weight *= probability(D, x) \}
- weights are now numbers between $0 . .1$ instead of only 0,1
- run returns an array of weighted samples


## Probabilistic programming 101: importance sampling

```
function multiDice(){
    x = rand(DiscreteUniform(1,6))
    for(i in 1:x){
        y = rand(DiscreteUniform(1,6))
        observe(DiscreteUniform(1,y), 3)
    }
    observe(DiscreteUniform(1,6), 5-x)
    return x
}
samples = run(multiDice, 1000)
```



Problem: most samples get rejected $\Longrightarrow$ convergence is slow Solution:

- change observe(rand (D) == x) $\mapsto$ observe(D, x)
- function observe(D,x)\{ weight *= probability(D, x) \}
- weights are now numbers between $0 . .1$ instead of only 0,1
- run returns an array of weighted samples


## Probabilistic programming 101: continuous distributions

Continuous distributions are problematic because probability ( $\mathrm{D}, \mathrm{x}$ ) $=0$.
When doing observe $(D, x)$ for continuous distributions $D$,

- Rejection sampling rejects $100 \%$ of the trials
- Importance sampling only produces trials with weight $=0$


## Probabilistic programming 101: continuous distributions

Continuous distributions are problematic because probability $(\mathrm{D}, \mathrm{x})=0$.
When doing observe $(D, x)$ for continuous distributions $D$,

- Rejection sampling rejects $100 \%$ of the trials
- Importance sampling only produces trials with weight $=0$

Standard solution: use the probability density function $\operatorname{pdf}(\mathrm{D}, \mathrm{x})$ instead.

```
function observe(D,x){ weight *= probability(D,x) }
    \mapsto
function observe(D,x){ weight *= pdf(D,x) }
```


## Probabilistic programming 101: continuous distributions

Continuous distributions are problematic because probability $(\mathrm{D}, \mathrm{x})=0$.
When doing observe $(D, x)$ for continuous distributions $D$,

- Rejection sampling rejects $100 \%$ of the trials
- Importance sampling only produces trials with weight $=0$

Standard solution: use the probability density function $\operatorname{pdf}(\mathrm{D}, \mathrm{x})$ instead.

$$
\begin{gathered}
\text { function observe(D,x)\{ weight } *=\operatorname{probability(D,x)\} } \\
\mapsto \\
\text { function observe(D, } x)\{\text { weight } *=\operatorname{pdf}(D, x)\}
\end{gathered}
$$

Intuition: $\operatorname{pdf}(D, x) \propto$ the probability that $\operatorname{rand}(D)$ is close to $x$. Formally:

$$
\operatorname{cdf}(D, x)=\mathbb{P}[\operatorname{rand}(D)<x] \quad \operatorname{pdf}(D, x)=\frac{d}{d x} \operatorname{cdf}(D, x)
$$

End of probabilistic programming 101.

## Probabilistic programming 101: continuous distributions

Continuous distributions are problematic because probability $(\mathrm{D}, \mathrm{x})=0$.
When doing observe $(D, x)$ for continuous distributions $D$,

- Rejection sampling rejects $100 \%$ of the trials
- Importance sampling only produces trials with weight $=0$

Standard solution: use the probability density function $\operatorname{pdf}(\mathrm{D}, \mathrm{x})$ instead.

$$
\begin{gathered}
\text { function observe }(D, x)\{\text { weight } *=\text { probability }(D, x)\} \\
\mapsto \\
\text { function observe }(D, x)\{\text { weight } *=\operatorname{pdf}(D, x)\}
\end{gathered}
$$

Intuition: $\operatorname{pdf}(D, x) \propto$ the probability that $\operatorname{rand}(D)$ is close to $x$. Formally:

$$
\operatorname{cdf}(D, x)=\mathbb{P}[\operatorname{rand}(D)<x] \quad \operatorname{pdf}(D, x)=\frac{d}{d x} \operatorname{cdf}(D, x)
$$

End of probabilistic programming 101.
Using the pdf instead of the probability is the source of the strange behaviour!

## What went wrong: conditionals

Recall the drunk scientist:

```
if(flip(0.5)){
    observe(Normal(1.8, 0.5), h)
}else{
    observe(Normal(70, 10), w)
}
```

```
function observe(D,x){
    weight *= pdf(D,x)
}
```


## What went wrong: conditionals

Recall the drunk scientist:

```
if(flip(0.5)){
    observe(Normal(1.8, 0.5), h)
}else{
    observe(Normal(70, 10), w)
}
```

- An observe $(D, x)$ call multiplies the weight by $\operatorname{pdf}(D, x)$
- The pdf is not unitless! $\operatorname{pdf}(\operatorname{Normal}(\mu, \sigma), x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}$
- The weight has units $\mathrm{m}^{-1}$ in some trials and $\mathrm{kg}^{-1}$ in other trials
- Results in unit errors when computing the weighted average:

$$
\mathbb{E}[b m i] \approx \frac{\sum_{k=1}^{N}\left(\text { weight }_{k}\right) \cdot\left(\text { bmi }_{k}\right)}{\sum_{k=1}^{N}\left(\text { weight }_{k}\right)}
$$

- The sum adds $\mathrm{m}^{-1}+\mathrm{kg}^{-1}$ !

What went wrong: nonlinear parameter transformations
Recall the log scale scientist:

```
observe(Normal(1.8, 0.5), h) vs observe(LogNormal(1.8, 0.5), H)
```

Conditioning on events of measure zero is ambiguous!

What went wrong: nonlinear parameter transformations
Recall the log scale scientist:

```
observe(Normal(1.8, 0.5), h) vs observe(LogNormal(1.8, 0.5), H)
```

Conditioning on events of measure zero is ambiguous!

$$
\begin{aligned}
& A_{\epsilon}=\left\{(x, y) \in \mathbb{R}^{2}:|x-y| \leq \epsilon\right\} \\
& B_{\epsilon}=\left\{(x, y) \in \mathbb{R}^{2}:|\exp (x)-\exp (y)| \leq \epsilon\right\}
\end{aligned}
$$

## What went wrong: nonlinear parameter transformations

Recall the log scale scientist:

```
observe(Normal(1.8, 0.5), h) vs observe(LogNormal(1.8, 0.5), H)
```

Conditioning on events of measure zero is ambiguous!

$$
\begin{aligned}
& A_{\epsilon}=\left\{(x, y) \in \mathbb{R}^{2}:|x-y| \leq \epsilon\right\} \\
& B_{\epsilon}=\left\{(x, y) \in \mathbb{R}^{2}:|\exp (x)-\exp (y)| \leq \epsilon\right\}
\end{aligned}
$$

"Although the sequences $A_{\epsilon}$ and $B_{\epsilon}$ tend to the same limit " $x=y$ ", the conditional densities $\mathbb{P}\left(x \mid A_{\epsilon}\right)$ and $\mathbb{P}\left(x \mid B_{\epsilon}\right)$ tend to different limits. As we see from this, merely to specify " $x=y$ " without any qualifications is ambiguous. Whenever we have a probability density on one space and we wish to generate from it one on a subspace of measure zero, the only safe procedure is to pass to an explicitly defined limit by a process like $A_{\epsilon}$ and $B_{\epsilon}$. In general, the final result will and must depend on which limiting operation was specified. This is extremely counter-intuitive at first hearing; yet it becomes obvious when the reason for it is understood."

- E.T. Jaynes (paraphrased)


## Solution: don't condition on measure zero events

Problem: conditioning on events of measure zero is ambiguous.
Solution: condition on intervals.

```
observe(D, Interval(x,w))
```

Meaning: $\operatorname{rand}(D)$ is in an interval of width $w$ around $x$.

## Solution: don't condition on measure zero events

Problem: conditioning on events of measure zero is ambiguous.
Solution: condition on intervals.

```
observe(D, Interval(x,w))
```

Meaning: $\operatorname{rand}(D)$ is in an interval of width $w$ around $x$.

## Rejection sampling:

```
function observe(D,I){
    if(abs(rand(D) - I.midpoint) > I.width/2){ weight = 0 }
}
```


## Solution: don't condition on measure zero events

Problem: conditioning on events of measure zero is ambiguous.
Solution: condition on intervals.
observe(D, Interval(x,w))

Meaning: $\operatorname{rand}(D)$ is in an interval of width $w$ around $x$.

## Rejection sampling:

```
function observe(D,I){
    if(abs(rand(D) - I.midpoint) > I.width/2){ weight = 0 }
}
```

Importance sampling:
function observe(D,I)\{ weight *= probability(D,I) \}
For intervals, probability(D,I) is nonzero.

## Example of conditioning on intervals

## Example:

```
function centimeters(){
    h = rand(Normal (170, 50))
    if(flip(0.5)){
        observe(Normal(180, 10), Interval(h, 10))
    }
}
function meters(){
    h = rand(Normal(1.7, 0.5))
    if(flip(0.5)){
        observe(Normal(1.8, 0.1), Interval(h, 0.1))
    }
}
```


## Example of conditioning on intervals

## Example:

```
function centimeters(){
    h = rand(Normal(170, 50))
    if(flip(0.5)){
        observe(Normal(180, 10), Interval(h, 10))
    }
}
function meters(){
    h = rand(Normal(1.7, 0.5))
    if(flip(0.5)){
        observe(Normal(1.8, 0.1), Interval(h, 0.1))
    }
}
```

Same output \& no unit errors, even though observe is conditionally executed!

## Example of conditioning on intervals

## Example:

```
function centimeters(){
    h = rand(Normal(170, 50))
    if(flip(0.5)){
        observe(Normal(180, 10), Interval(h, 10))
    }
}
function meters(){
    h = rand(Normal(1.7, 0.5))
    if(flip(0.5)){
        observe(Normal(1.8, 0.1), Interval(h, 0.1))
    }
}
```

Same output \& no unit errors, even though observe is conditionally executed! Rejection sampling and importance sampling converge to the same answer!

## Take the limit

We still want to condition on measure zero events

## Take the limit

## We still want to condition on measure zero events

Idea: parameterize the program by the width of the interval, and take the limit width $\rightarrow 0$

## Take the limit

## We still want to condition on measure zero events

Idea: parameterize the program by the width of the interval, and take the limit width $\rightarrow 0$

```
function drunk(width){
    h = rand(Normal(1.7, 0.5))
    W = rand(Normal (60, 10))
    if(flip(0.5)){
        observe(Normal(1.8, 0.1), Interval(h, A*width))
    }else{
        observe(Normal(70, 10), Interval(w, B*width))
    }
}
```

Since width is unitless, we must introduce constants $A$ and $B$ with units $m$ and $k g$. The relative size matters even as width $\rightarrow 0$ !

## Take the limit

We still want to condition on measure zero events
Idea: parameterize the program by the width of the interval, and take the limit width $\rightarrow 0$

```
function drunk(width){
    h = rand(Normal(1.7, 0.5))
    W = rand(Normal (60, 10))
    if(flip(0.5)){
        observe(Normal(1.8, 0.1), Int
    }else{
        observe(Normal(70, 10), Inter
    }
}
```

Since width is unitless, we must introduce constants $A$ and $B$ with units $m$ and $k g$. The relative size matters even as width $\rightarrow 0$ !


## Take the limit

We still want to condition on measure zero events
Idea: parameterize the program by the width of the interval, and take the limit width $\rightarrow 0$

```
function drunk(width){
    h = rand(Normal(1.7, 0.5))
    W = rand(Normal (60, 10))
    if(flip(0.5)){
        observe(Normal(1.8, 0.1), Int
    }else{
        observe(Normal(70, 10), Inter
    }
}
```

Since width is unitless, we must introduce constants $A$ and $B$ with units $m$ and $k g$. The relative size matters even as width $\rightarrow 0$ !


## Can we compute the limit $w \rightarrow 0$ directly?

## Infinitesimal numbers

## Definition

An infinitesimal number is a pair $(r, n) \in \mathbb{R} \times \mathbb{Z}$, which we write as $r \epsilon^{n}$.

## Infinitesimal numbers

## Definition

An infinitesimal number is a pair $(r, n) \in \mathbb{R} \times \mathbb{Z}$, which we write as $r \epsilon^{n}$.
Arithmetic with infinitesimals:

$$
\begin{aligned}
r \epsilon^{n} \pm s \epsilon^{k} & = \begin{cases}(r \pm s) \epsilon^{n} & \text { if } n=k \\
r \epsilon^{n} & \text { if } n<k \\
\pm s \epsilon^{k} & \text { if } n>k\end{cases} \\
\left(r \epsilon^{n}\right) \cdot\left(s \epsilon^{k}\right) & =(r \cdot s) \epsilon^{n+k} \\
\left(r \epsilon^{n}\right) /\left(s \epsilon^{k}\right) & = \begin{cases}(r / s) \epsilon^{n-k} & \text { if } s \neq 0 \\
\text { undefined } & \text { if } s=0\end{cases}
\end{aligned}
$$

## Infinitesimal numbers

The probability that $\operatorname{rand}(D)$ lies in the interval $\left[x-r \epsilon^{n}, x+r \epsilon^{n}\right]$ :

$$
\operatorname{probability}\left(D, \operatorname{Interval}\left(x, r \epsilon^{n}\right)\right)= \begin{cases}\operatorname{cdf}\left(D, x+\frac{1}{2} r\right)-\operatorname{cdf}\left(D, x-\frac{1}{2} r\right) & \text { if } n=0 \\ \operatorname{pdf}(D, x) \cdot r \epsilon^{n} & \text { if } n>0\end{cases}
$$

## Infinitesimal numbers

The probability that $\operatorname{rand}(D)$ lies in the interval $\left[x-r \epsilon^{n}, x+r \epsilon^{n}\right]$ :

$$
\operatorname{probability}\left(D, \operatorname{Interval}\left(x, r \epsilon^{n}\right)\right)= \begin{cases}\operatorname{cdf}\left(D, x+\frac{1}{2} r\right)-\operatorname{cdf}\left(D, x-\frac{1}{2} r\right) & \text { if } n=0 \\ \operatorname{pdf}(D, x) \cdot r \epsilon^{n} & \text { if } n>0\end{cases}
$$

Infinitesimals unify cdf and pdf!

## Correctness properties

## Consistency with existing probabilistic programming languages:

observe ( $D$, Interval ( $x, e p s$ )) gives the same result as observe ( $D, x$ ) outside conditionals

## Correctness properties

## Consistency with existing probabilistic programming languages:

observe ( D , Interval ( $\mathrm{x}, \mathrm{eps}$ ) ) gives the same result as observe ( $\mathrm{D}, \mathrm{x}$ ) outside conditionals
Consistency with non-zero width intervals:
observe(D,Interval(x,eps)) gives the same result as observe(D, Interval( $x$, width)) and then taking the limit width $\rightarrow 0$

## Theorem

If $f(x)$ is given by a "probability expression" and $f(\epsilon)=r \epsilon^{n}$, then $\lim _{x \rightarrow 0} \frac{f(x)}{x^{n}}=r$.

## Correctness properties

## Consistency with existing probabilistic programming languages:

observe ( $D$, Interval ( $x, e p s$ )) gives the same result as observe ( $D, x$ ) outside conditionals

## Consistency with non-zero width intervals:

observe(D, Interval(x,eps)) gives the same result as observe(D, Interval( $x$, width)) and then taking the limit width $\rightarrow 0$

## Theorem

If $f(x)$ is given by a "probability expression" and $f(\epsilon)=r \epsilon^{n}$, then $\lim _{x \rightarrow 0} \frac{f(x)}{x^{n}}=r$.

## Definition

We say that $f(x)$ is a "probability expression" in the variable $x$ if $f(x)$ is defined using the operations $+,-, \cdot, /$, constants, and probability $(D$, Interval $(s, r x))$ where $r, s \in \mathbb{R}$ are constants, and $D$ is a probability distribution with differentiable cdf.
Importance sampling computes a probability expression.

## Infinitesimal numbers

## Example programs:

```
function bmi(width){
    h = rand(Normal(1.70, 0.2))
    w}=\operatorname{rand}(\operatorname{Normal}(70,30)
    if(flip (0.5)){
        observe(Normal(2.0,0.1), Interval(h,10* width))
    }else{
            observe(Normal(90,5), Interval(w, width))
    }
    return w / h^2
}
function meters(width){
    h = rand(Normal (1.7,0.5))
    if(flip (0.5)){
                observe(Normal(2.0,0.1), Interval(h,width))
    }
    return h
}
function decibels(width){
    x = rand (Normal (10,5))
    observe(Normal(15,5), Interval (x, width))
    return x
}
```



Theorem works: we can condition on events of measure zero without paradoxes

## Parameter transformations

The factor in front of $\epsilon$ allows us to do parameter transformations correctly:
A function $f$ maps Interval $(x, \epsilon)$ to $\operatorname{Interval}\left(f(x), f^{\prime}(x) \epsilon\right)$.

## Parameter transformations

The factor in front of $\epsilon$ allows us to do parameter transformations correctly:
A function $f$ maps Interval $(x, \epsilon)$ to $\operatorname{Interval}\left(f(x), f^{\prime}(x) \epsilon\right)$.

## Original program:

```
h = rand(Normal (1.7,0.5))
observe(Normal(1.8,0.5),
    Interval(h,eps))
return h
```

Answer: 1.75

## Parameter transformations

The factor in front of $\epsilon$ allows us to do parameter transformations correctly:
A function $f$ maps Interval $(x, \epsilon)$ to Interval $\left(f(x), f^{\prime}(x) \epsilon\right)$.

## Original program:

```
h = rand(Normal (1.7,0.5))
observe(Normal(1.8,0.5),
    Interval(h, eps))
return h
```

Answer: 1.75

Logarithmic ruler program:

```
H = rand(LogNormal(1.7,0.5))
observe(LogNormal(1.8,0.5),
    Interval(H,H*eps))
    return log(H)
```

Answer: 1.75

Same output $\Longrightarrow$ parameter transformation correctly applied

## Parameter transformations

Language support for parameter transformations $f: \mathbb{R} \rightarrow \mathbb{R}$.

- Define $f(D)$ for distributions by defining rand, pdf, cdf of $f(D)$
- Define $f(I)$ for finite width intervals and infinitesimal width intervals Requires that $f$ is monotone and differentiable.


## Original program:

observe(Normal (1.8,0.5), Interval(h,eps))
Answer: 1.75

## Parameter transformations

Language support for parameter transformations $f: \mathbb{R} \rightarrow \mathbb{R}$.

- Define $f(D)$ for distributions by defining rand, pdf, cdf of $f(D)$
- Define $f(I)$ for finite width intervals and infinitesimal width intervals Requires that $f$ is monotone and differentiable.


## Original program:

observe (Normal ( $1.8,0.5$ ),
Interval (h, eps))
Answer: 1.75

## Logarithmic ruler program:

$$
\begin{array}{r}
\text { observe }(\exp (\text { Normal }(1.8,0.5)), \\
\exp (\text { Interval }(h, \text { eps })))
\end{array}
$$

Answer: 1.75

## Parameter transformations

Language support for parameter transformations $f: \mathbb{R} \rightarrow \mathbb{R}$.

- Define $f(D)$ for distributions by defining rand, pdf, cdf of $f(D)$
- Define $f(I)$ for finite width intervals and infinitesimal width intervals Requires that $f$ is monotone and differentiable.


## Original program:

> observe (Normal ( $1.8,0.5)$, Interval (h, eps) )

Logarithmic ruler program:

$$
\begin{array}{r}
\text { observe (exp(Normal (1.8, 0.5)) }, \\
\exp (\text { Interval (h, eps) ) })
\end{array}
$$

Answer: 1.75

In general: observe(f(D), f(I)) $\equiv$ observe(D, I)
$\Longrightarrow$ programs are invariant under parameter transformations

## Recap

- Paradoxical behaviour: seemingly equivalent probabilistic programs give different outputs
- Root of the problem: conditioning on measure-zero events is ambiguous
- Solution: condition on intervals
- Restores rejection sampling as ground truth semantics
- Model measure-zero events as a limit, computed using infinitesimal arithmetic
- Semantics of observe(D, Interval(x, eps)) agrees with the old observe(D, x) in most cases
- Programs are now invariant under parameter transformations
- Implementation in Julia


## Comments or questions?

julesjacobs@gmail.com

Acknowledgements I thank Sriram Sankaranarayanan and the anonymous POPL reviewers for their outstanding feedback. I'm grateful to Ike Mulder, Arjen Rouvoet, Paolo Giarrusso, Dongho Lee, Ahmad Salim Al-Sibahi, Sam Staton, Christian Weilbach, and Robbert Krebbers for help, inspiration, and discussions.

