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Probabilistic programming

Example:

▶ A scientist randomly selects a man and a woman and measures their height

▶ The woman’s height h ∼ Normal(1.7, 0.5) meters

▶ The man’s height h′ ∼ Normal(1.8, 0.5) meters

Question: What’s the expectation of h conditioned on h′ = h?

function meters (){

h = rand(Normal (1.7, 0.5))

observe(Normal (1.8, 0.5), h)

return h

}

samples = run(meters , 1000)

estimate = average(samples)

Answer: ≈ 1.75

function centimeters (){

h = rand(Normal (170, 50))

observe(Normal (180, 50), h)

return h

}

samples = run(centimeters , 1000)

estimate = average(samples)

Answer: ≈ 175
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Paradox 1

Suppose the scientist is lazy, and only does the measurement half of the time...

Meters:

h = rand(Normal (1.7, 0.5))

if(flip (0.5)){

observe(Normal (1.8, 0.5), h)

}

return h

Answer: ≈ 1.721

Centimeters:

h = rand(Normal (170, 50))

if(flip (0.5)){

observe(Normal (180, 50), h)

}

return h

Answer: ≈ 170.2

▶ The answer depends on whether the scientist uses meters or centimeters!

▶ Happens if we run this with importance sampling

▶ Even happens in formal operational semantics (e.g. Commutative or Quasi-Borel)

▶ Unclear what the answer should be, or whether this program should be disallowed
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Paradox 2
Objection: you shouldn’t do observe a variable number of times based on coin flip

Suppose the scientist is drunk, and measures the weight half of the time...

h = rand(Normal (1.7, 0.5))

w = rand(Normal (60, 10))

if(flip (0.5)){

observe(Normal (1.8, 0.5), h)

}else{

observe(Normal (70, 10), w)

}

return h

Answer: ≈ 1.75

h = rand(Normal (170, 50))

w = rand(Normal (60, 10))

if(flip (0.5)){

observe(Normal (180, 50), h)

}else{

observe(Normal (70, 10), w)

}

return h

Answer: ≈ 170

▶ The same number of observes regardless of the outcome of the coin flip

▶ The output still depends on whether we use meters or centimeters
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Paradox 3 (similar to Borel-Komolgorov)

Objection: you shouldn’t do observe inside a conditional

Suppose the scientist uses a ruler marked in log scale...

Original program:

h = rand(Normal (1.7 ,0.5))

observe(Normal (1.8 ,0.5) ,h)

return h

Answer: 1.75

Logarithmic ruler program:

H = rand(LogNormal (1.7 ,0.5))

observe(LogNormal (1.8 ,0.5) ,H)

return log(H)

Answer: 1.62

▶ Whether we use linear scale or log scale shouldn’t matter

▶ What do probabilistic programs really mean?
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Overview

Problem:

▶ Output of probabilistic programs depends on the scale

▶ It’s not clear what observe is supposed to mean

Key ideas:

1. Figure out what observe should do, by analogy with the discrete case

2. observe on intervals instead of points

3. Can condition on infinitesimally small intervals

Result:

▶ No unit/scale anomalies

▶ Programs have clear probabilistic meaning via rejection sampling

▶ Proof of concept in Julia
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Probabilistic programming 101: Rejection sampling

function threeDice (){

x = rand(DiscreteUniform (1 ,6))

y = rand(DiscreteUniform (1 ,6))

z = rand(DiscreteUniform (1 ,6))

observe(z == x + y)

return x

}

samples = run(threeDice , 1000)

PPL implementation:

weight = 1

function observe(b){

if(!b) weight = 0

}

function run(func , k){

samples = []

for(i in 1..k){

weight = 1

y = func()

if(weight == 1){

samples.add(y)

}

}

return samples

}
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Probabilistic programming 101: Importance sampling

function threeDice (){

x = rand(DiscreteUniform (1 ,99))

y = rand(DiscreteUniform (1 ,99))

z = rand(DiscreteUniform (1 ,99))

observe(z == x + y)

return x

}

samples = run(threeDice , 1000)

Faster convergence

PPL implementation:

weight = 1

function observe(D,x){

weight *= prob(D,x)

}

function run(func , k){

samples = []

for(i in 1..k){

weight = 1

y = func()

samples.add((weight ,y))

}

return samples

}

8 / 20
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Probabilistic programming 101: Continuous distributions

Continuous distributions: prob(D,x) = 0.

▶ Rejection sampling rejects 100% of the trials

▶ Importance sampling only produces trials with weight = 0

Standard solution: use probability density function pdf(D,x):

function observe(D,x){ weight *= prob(D,x) }

↓

function observe(D,x){ weight *= pdf(D,x) }

Intuition: pdf(D, x) ∝ the probability that rand(D) is close to x.

Source of paradoxes
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What went wrong: conditionals

Recall the drunk scientist:

if(flip (0.5)){

observe(Normal (1.8, 0.5), h)

}else{

observe(Normal (70, 10), w)

}

function observe(D,x){

weight *= pdf(D,x)

}

▶ The PPL implementation is adding m−1 + kg−1!

E[output] ≈
∑N

k=1(weightk) · (outputk)∑N
k=1(weightk)

▶ The weight has units m−1 in some trials and kg−1 in other trials

▶ Probabilities don’t have units, but pdf’s do
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Blame the programmer!

“It’s your own responsibility to make the
weight variable have consistent units.”

▶ Semantics of observe = multiply weight by pdf
▶ Are we doing “accumulate a weight”-programming?

▶ Pragmatist view

▶ Or are we doing probabilistic programming?

▶ Purist view
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What went wrong
Conditioning on events of measure zero is ambiguous!

Aϵ = {(x , y) ∈ R2 : |x − y | ≤ ϵ} ϵ→0−−→ {(x , y) ∈ R2 : x = y}

Bϵ = {(x , y) ∈ R2 : | exp(x)− exp(y)| ≤ ϵ} ϵ→0−−→ {(x , y) ∈ R2 : x = y}

“Although the sequences Aϵ and Bϵ tend to the same limit “x = y”, the conditional densities
P(x |Aϵ) and P(x |Bϵ) tend to different limits. As we see from this, merely to specify “x = y”
without any qualifications is ambiguous. Whenever we have a probability density on one
space and we wish to generate from it one on a subspace of measure zero, the only safe
procedure is to pass to an explicitly defined limit by a process like Aϵ and Bϵ. In general, the
final result will and must depend on which limiting operation was specified. This is extremely
counter-intuitive at first hearing; yet it becomes obvious when the reason for it is
understood.”
– E.T. Jaynes (paraphrased)
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Solution: don’t condition on measure zero events

Problem: conditioning on events of measure zero is ambiguous.
Solution: condition on intervals.

observe(D, Interval(x,w))

Semantic meaning: rand(D) is in an interval of width w around x .

Rejection sampling:

function observe(D,I){

if(rand(D) not in I){ weight = 0 }

}

Importance sampling:

function observe(D,I){ weight *= probability(D,I) }

For intervals, probability(D,I) is nonzero.
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Importance sampling:

function observe(D,I){ weight *= probability(D,I) }

For intervals, probability(D,I) is nonzero.
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Intervals remove unit anomalies

function centimeters (){

h = rand(Normal (170, 50))

if(flip (0.5)){

observe(Normal (180, 10), Interval(h, 10))

}

}

function meters (){

h = rand(Normal (1.7, 0.5))

if(flip (0.5)){

observe(Normal (1.8, 0.1), Interval(h, 0.1))

}

}

▶ Same output & no unit errors, even though observe is conditionally executed

▶ Rejection sampling and importance sampling converge to the same answer
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Take the limit
We still want to condition on measure zero events

Idea: parameterize the program by the width of the interval, and take the limit width → 0

function drunk(width ){

h = rand(Normal (1.7, 0.5))

w = rand(Normal (60, 10))

if(flip (0.5)){

observe(Normal (1.8, 0.1), Interval(h, A*width))

}else{

observe(Normal (70, 10), Interval(w, B*width))

}

}

Since width is unitless, we must introduce
constants A and B with units m and kg .
The relative size matters even as width → 0!

Can we compute the limit w → 0 directly?
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Infinitesimal numbers

Definition
An infinitesimal number is a pair (r , n) ∈ R× Z, which we write as rϵn.

rϵn ± sϵk =


(r ± s)ϵn if n = k

rϵn if n < k

±sϵk if n > k

(rϵn) · (sϵk) = (r · s)ϵn+k

(rϵn)/(sϵk) =

{
(r/s)ϵn−k if s ̸= 0

undefined if s = 0

probability(D, Interval(x , rϵn)) =

{
cdf(D, x + 1

2 r)− cdf(D, x − 1
2 r) if n = 0

pdf(D, x) · rϵn if n > 0

16 / 20



Infinitesimal numbers

Definition
An infinitesimal number is a pair (r , n) ∈ R× Z, which we write as rϵn.

rϵn ± sϵk =


(r ± s)ϵn if n = k

rϵn if n < k

±sϵk if n > k

(rϵn) · (sϵk) = (r · s)ϵn+k

(rϵn)/(sϵk) =

{
(r/s)ϵn−k if s ̸= 0

undefined if s = 0

probability(D, Interval(x , rϵn)) =

{
cdf(D, x + 1

2 r)− cdf(D, x − 1
2 r) if n = 0

pdf(D, x) · rϵn if n > 0

16 / 20



Infinitesimals give the limit
f u n c t i o n bmi ( width ){

h = rand ( Normal ( 1 . 7 0 , 0 . 2 ) )
w = rand ( Normal (70 , 30) )
i f ( f l i p ( 0 . 5 ) ){

ob s e r v e ( Normal ( 2 . 0 , 0 . 1 ) , I n t e r v a l ( h ,10∗ width ) )
} e l s e{

ob s e r v e ( Normal ( 90 , 5 ) , I n t e r v a l (w, width ) )
}
r e t u r n w / hˆ2

}

f u n c t i o n meter s ( width ){
h = rand ( Normal ( 1 . 7 , 0 . 5 ) )
i f ( f l i p ( 0 . 5 ) ){

ob s e r v e ( Normal ( 2 . 0 , 0 . 1 ) , I n t e r v a l ( h , width ) )
}
r e t u r n h

}

f u n c t i o n d e c i b e l s ( width ){
x = rand ( Normal ( 10 , 5 ) )
ob s e r v e ( Normal ( 15 , 5 ) , I n t e r v a l ( x , w idth ) )
r e t u r n x

}

Consistency with non-zero width intervals:
observe(D,Interval(x,eps)) gives the same result as

observe(D,Interval(x,width)) and then taking the limit width → 0
17 / 20



Parameter transformations

Intervals give reparameterisation invariance:

A function f maps Interval(x , ϵ) to Interval(f (x), f ′(x)ϵ).

Original scale:

h = rand(Normal (1.7 ,0.5))

observe(Normal (1.8 ,0.5) ,

Interval(h,eps))

return h

Answer: 1.75

Logarithmic scale:

H = rand(LogNormal (1.7 ,0.5))

observe(LogNormal (1.8 ,0.5) ,

exp(Interval(H,eps )))

return log(H)

Answer: 1.75

Same output =⇒ programs are invariant under choice of scale

(unit changes are a special case)
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Recap

▶ Paradoxical behaviour

▶ Root of the problem: conditioning on measure-zero events is ambiguous

▶ Approach: rejection sampling as ground truth semantics

▶ Condition on intervals

▶ Measure-zero events as Interval(x, eps)

▶ Removes paradoxical behaviour: invariance under reparameterisations

▶ Proof of concept in Julia
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Comments or questions?
mail@julesjacobs.com
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