Paradoxes of Probabilistic Programming

and how to condition on events of measure zero with infinitesimal probabilities (POPL'21)

Jules Jacobs

Radboud University Nijmegen mail@julesjacobs.com

Probabilistic programming

Example:

- > A scientist randomly selects a man and a woman and measures their height
- The woman's height $h \sim Normal(1.7, 0.5)$ meters
- The man's height $h' \sim Normal(1.8, 0.5)$ meters

Question: What's the expectation of *h* conditioned on h' = h?

Probabilistic programming

Example:

- ► A scientist randomly selects a man and a woman and measures their height
- The woman's height $h \sim Normal(1.7, 0.5)$ meters
- The man's height $h' \sim Normal(1.8, 0.5)$ meters

Question: What's the expectation of *h* conditioned on h' = h?

```
function meters(){
    h = rand(Normal(1.7, 0.5))
    observe(Normal(1.8, 0.5), h)
    return h
}
samples = run(meters, 1000)
estimate = average(samples)
Answer: ≈ 1.75
```

Probabilistic programming

Example:

- ► A scientist randomly selects a man and a woman and measures their height
- The woman's height $h \sim Normal(1.7, 0.5)$ meters
- The man's height $h' \sim Normal(1.8, 0.5)$ meters

Question: What's the expectation of *h* conditioned on h' = h?

```
function meters(){
                                   function centimeters(){
  h = rand(Normal(1.7, 0.5))
                                    h = rand(Normal(170, 50))
  observe(Normal(1.8, 0.5), h)
                                     observe(Normal(180, 50), h)
  return h
                                     return h
}
                                   }
samples = run(meters, 1000)
                                   samples = run(centimeters, 1000)
estimate = average(samples)
                                   estimate = average(samples)
Answer: \approx 1.75
                                  Answer: \approx 175
```

Suppose the scientist is lazy, and only does the measurement half of the time...

Suppose the scientist is lazy, and only does the measurement half of the time...

```
h = rand(Normal(1.7, 0.5))
if(flip(0.5)){
    observe(Normal(1.8, 0.5), h)
}
return h
Answer: ≈ 1.721
```

Suppose the scientist is lazy, and only does the measurement half of the time...

Centimeters:

Meters:

The answer depends on whether the scientist uses meters or centimeters!

Suppose the scientist is lazy, and only does the measurement half of the time...

Centimeters:

- The answer depends on whether the scientist uses meters or centimeters!
- Happens if we run this with importance sampling

Suppose the scientist is lazy, and only does the measurement half of the time...

Centimeters:

- The answer depends on whether the scientist uses meters or centimeters!
- Happens if we run this with importance sampling
- Even happens in formal operational semantics (e.g. Commutative or Quasi-Borel)

Suppose the scientist is lazy, and only does the measurement half of the time...

Centimeters:

- The answer depends on whether the scientist uses meters or centimeters!
- Happens if we run this with importance sampling
- Even happens in formal operational semantics (e.g. Commutative or Quasi-Borel)
- Unclear what the answer should be, or whether this program should be disallowed

Objection: you shouldn't do observe a variable number of times based on coin flip

Suppose the scientist is drunk, and measures the weight half of the time...

Objection: you shouldn't do observe a variable number of times based on coin flip

Suppose the scientist is drunk, and measures the weight half of the time...

```
h = rand(Normal(1.7, 0.5))
w = rand(Normal(60, 10))
if(flip(0.5)){
    observe(Normal(1.8, 0.5), h)
}else{
    observe(Normal(70, 10), w)
}
return h
Answer: ≈ 1.75
```

Objection: you shouldn't do observe a variable number of times based on coin flip

Suppose the scientist is drunk, and measures the weight half of the time...

```
h = rand(Normal(170, 50))
h = rand(Normal(1.7, 0.5))
w = rand(Normal(60, 10))
                                    w = rand(Normal(60, 10))
if(flip(0.5)){
                                    if(flip(0.5)){
  observe(Normal(1.8, 0.5), h)
                                       observe(Normal(180, 50), h)
}else{
                                    }else{
  observe(Normal(70, 10), w)
                                       observe(Normal(70, 10), w)
}
                                    3
return h
                                    return h
Answer: \approx 1.75
                                    Answer: \approx 170
```

- The same number of observes regardless of the outcome of the coin flip
- The output still depends on whether we use meters or centimeters

Objection: you shouldn't do observe inside a conditional

Suppose the scientist uses a ruler marked in log scale...

Objection: you shouldn't do observe inside a conditional

Suppose the scientist uses a ruler marked in log scale...

Original program:

```
h = rand(Normal(1.7,0.5))
observe(Normal(1.8,0.5),h)
return h
```

Answer: 1.75

Objection: you shouldn't do observe inside a conditional

Suppose the scientist uses a ruler marked in log scale...

Original program:

```
h = rand(Normal(1.7,0.5))
observe(Normal(1.8,0.5),h)
return h
```

Answer: 1.75

Logarithmic ruler program:

```
H = rand(LogNormal(1.7,0.5))
observe(LogNormal(1.8,0.5),H)
return log(H)
```

```
Answer: 1.62
```

Objection: you shouldn't do observe inside a conditional

Suppose the scientist uses a ruler marked in log scale...

Original program:

```
h = rand(Normal(1.7,0.5))
observe(Normal(1.8,0.5),h)
return h
```

Answer: 1.75

```
Logarithmic ruler program:
```

```
H = rand(LogNormal(1.7,0.5))
observe(LogNormal(1.8,0.5),H)
return log(H)
```

```
Answer: 1.62
```

- Whether we use linear scale or log scale shouldn't matter
- What do probabilistic programs really mean?

Overview

Problem:

- Output of probabilistic programs depends on the scale
- It's not clear what observe is supposed to mean

Overview

Problem:

- Output of probabilistic programs depends on the scale
- It's not clear what observe is supposed to mean

Key ideas:

- $1. \ \mbox{Figure out what observe should do, by analogy with the discrete case$
- 2. observe on *intervals* instead of points
- 3. Can condition on infinitesimally small intervals

Overview

Problem:

- Output of probabilistic programs depends on the scale
- It's not clear what observe is supposed to mean

Key ideas:

- $1. \ \mbox{Figure out what observe should do, by analogy with the discrete case$
- 2. observe on *intervals* instead of points
- 3. Can condition on infinitesimally small intervals

Result:

- ► No unit/scale anomalies
- Programs have clear probabilistic meaning via rejection sampling
- Proof of concept in Julia

```
function threeDice(){
  x = rand(DiscreteUniform(1,6))
  y = rand(DiscreteUniform(1,6))
  z = rand(DiscreteUniform(1,6))
  observe(z == x + y)
  return x
}
samples = run(threeDice, 1000)
```

```
function threeDice(){
  x = rand(DiscreteUniform(1,6))
  y = rand(DiscreteUniform(1,6))
  z = rand(DiscreteUniform(1,6))
  observe(z == x + y)
  return x
}
samples = run(threeDice, 1000)
```

```
weight = 1
function observe(b){
  if(!b) weight = 0
function run(func, k){
  samples = []
  for(i in 1..k){
    weight = 1
    y = func()
    if(weight == 1){
      samples.add(y)
  return samples
```

```
function threeDice(){
  x = rand(DiscreteUniform(1,6))
  y = rand(DiscreteUniform(1,6))
  z = rand(DiscreteUniform(1,6))
  observe(z == x + y)
  return x
}
samples = run(threeDice, 1000)
 0.4
frequency
 0.1
 0.0
                 4
```

```
weight = 1
function observe(b){
  if(!b) weight = 0
function run(func, k){
  samples = []
  for(i in 1..k){
    weight = 1
    y = func()
    if(weight == 1){
      samples.add(y)
  return samples
```

```
function threeDice(){
  x = rand(DiscreteUniform(1,6))
  y = rand(DiscreteUniform(1,6))
  z = rand(DiscreteUniform(1,6))
  observe(z == x + y)
  return x
}
samples = run(threeDice, 1000)
 0.4
frequency
 0.1
 0.0
```

```
weight = 1
function observe(b){
  if(!b) weight = 0
function run(func, k){
  samples = []
  for(i in 1..k){
    weight = 1
    y = func()
    if(weight == 1){
      samples.add(y)
  return samples
```

```
function threeDice(){
  x = rand(DiscreteUniform(1,6))
  y = rand(DiscreteUniform(1,6))
  z = rand(DiscreteUniform(1,6))
  observe(z == x + y)
  return x
}
samples = run(threeDice, 1000)
 0.4
frequency
 01
        2
                4
```

```
weight = 1
function observe(b){
  if(!b) weight = 0
function run(func, k){
  samples = []
  for(i in 1..k){
    weight = 1
    y = func()
    if(weight == 1){
      samples.add(y)
  return samples
```

```
function threeDice(){
  x = rand(DiscreteUniform(1,6))
  y = rand(DiscreteUniform(1,6))
  z = rand(DiscreteUniform(1,6))
  observe(z == x + y)
  return x
}
samples = run(threeDice, 1000)
 0.4
frequency
 01
                4
        2
           3
```

```
weight = 1
function observe(b){
  if(!b) weight = 0
function run(func, k){
  samples = []
  for(i in 1..k){
    weight = 1
    y = func()
    if(weight == 1){
      samples.add(y)
  return samples
```

Probabilistic programming 101: Importance sampling

```
function threeDice(){
```

```
x = rand(DiscreteUniform(1,99))
y = rand(DiscreteUniform(1,99))
z = rand(DiscreteUniform(1,99))
observe(z == x + y)
return x
}
samples = run(threeDice, 1000)
```

Probabilistic programming 101: Importance sampling

```
function threeDice(){
```

```
x = rand(DiscreteUniform(1,99))
y = rand(DiscreteUniform(1,99))
Z = DiscreteUniform(1,99)
observe(Z, x + y)
return x
}
samples = run(threeDice, 1000)
```

Probabilistic programming 101: Importance sampling

```
function threeDice(){
```

```
x = rand(DiscreteUniform(1,99))
y = rand(DiscreteUniform(1,99))
Z = DiscreteUniform(1,99)
observe(Z, x + y)
return x
}
samples = run(threeDice, 1000)
```

Faster convergence

```
weight = 1
function observe(D.x){
  weight *= prob(D,x)
function run(func, k){
  samples = []
  for(i in 1..k){
    weight = 1
    v = func()
    samples.add((weight,y))
  return samples
```

Continuous distributions: prob(D,x) = 0.

Rejection sampling rejects 100% of the trials

Importance sampling only produces trials with weight = 0

Continuous distributions: prob(D,x) = 0.

- Rejection sampling rejects 100% of the trials
- Importance sampling only produces trials with weight = 0

Standard solution: use probability density function pdf(D,x):

function observe(D,x){ weight *= prob(D,x) }
function observe(D,x){ weight *= pdf(D,x) }

Continuous distributions: prob(D,x) = 0.

- Rejection sampling rejects 100% of the trials
- Importance sampling only produces trials with weight = 0

Standard solution: use probability density function pdf(D,x):

function observe(D,x){ weight *= prob(D,x) }

function observe(D,x){ weight *= pdf(D,x) }

Intuition: $pdf(D, x) \propto$ the probability that rand(D) is close to x.

Continuous distributions: prob(D,x) = 0.

- Rejection sampling rejects 100% of the trials
- Importance sampling only produces trials with weight = 0

Standard solution: use probability density function pdf(D,x):

function observe(D,x){ weight *= pdf(D,x) }

Intuition: $pdf(D, x) \propto$ the probability that rand(D) is close to x.

Source of paradoxes

What went wrong: conditionals

Recall the drunk scientist:

```
if(flip(0.5)){
    observe(Normal(1.8, 0.5), h)
}else{
    observe(Normal(70, 10), w)
}
```

```
function observe(D,x){
  weight *= pdf(D,x)
}
```

What went wrong: conditionals

Recall the drunk scientist:

```
if(flip(0.5)){
    observe(Normal(1.8, 0.5), h)
}else{
    observe(Normal(70, 10), w)
}
```

function	<pre>observe(D,x){</pre>
weight	<pre>*= pdf(D,x)</pre>
}	

• The PPL implementation is adding $m^{-1} + kg^{-1}$!

$$\mathbb{E}[output] \approx \frac{\sum_{k=1}^{N} (weight_k) \cdot (output_k)}{\sum_{k=1}^{N} (weight_k)}$$

- The weight has units m^{-1} in some trials and kg^{-1} in other trials
- Probabilities don't have units, but pdf's do

Blame the programmer!

"It's your own responsibility to make the weight variable have consistent units."

"It's your own responsibility to make the weight variable have consistent units."

- Semantics of observe = multiply weight by pdf
- Are we doing "accumulate a weight"-programming?
 - Pragmatist view
- Or are we doing probabilistic programming?
 - Purist view

What went wrong

Conditioning on events of measure zero is ambiguous!

What went wrong

Conditioning on events of measure zero is ambiguous!

$$egin{aligned} & \mathcal{A}_{\epsilon} = \{(x,y) \in \mathbb{R}^2 : |x-y| \leq \epsilon\} & & \stackrel{\epsilon o 0}{\longrightarrow} & \{(x,y) \in \mathbb{R}^2 : x = y\} \ & \mathcal{B}_{\epsilon} = \{(x,y) \in \mathbb{R}^2 : |\exp(x) - \exp(y)| \leq \epsilon\} & & \stackrel{\epsilon o 0}{\longrightarrow} & \{(x,y) \in \mathbb{R}^2 : x = y\} \end{aligned}$$

What went wrong

Conditioning on events of measure zero is ambiguous!

$$\begin{array}{ll} \mathsf{A}_{\epsilon} = \{(x,y) \in \mathbb{R}^{2} : |x-y| \leq \epsilon\} & \xrightarrow{\epsilon \to 0} & \{(x,y) \in \mathbb{R}^{2} : x = y\} \\ \mathsf{B}_{\epsilon} = \{(x,y) \in \mathbb{R}^{2} : |\exp(x) - \exp(y)| \leq \epsilon\} & \xrightarrow{\epsilon \to 0} & \{(x,y) \in \mathbb{R}^{2} : x = y\} \end{array}$$

"Although the sequences A_{ϵ} and B_{ϵ} tend to the same limit "x = y", the conditional densities $\mathbb{P}(x|A_{\epsilon})$ and $\mathbb{P}(x|B_{\epsilon})$ tend to different limits. As we see from this, merely to specify "x = y" without any qualifications is ambiguous. Whenever we have a probability density on one space and we wish to generate from it one on a subspace of measure zero, the only safe procedure is to pass to an explicitly defined limit by a process like A_{ϵ} and B_{ϵ} . In general, the final result will and must depend on which limiting operation was specified. This is extremely counter-intuitive at first hearing; yet it becomes obvious when the reason for it is understood."

- E.T. Jaynes (paraphrased)

Solution: don't condition on measure zero events

Problem: conditioning on events of measure zero is ambiguous. **Solution:** condition on intervals.

```
observe(D, Interval(x,w))
```

Semantic meaning: rand(D) is in an interval of width w around x.

Solution: don't condition on measure zero events

Problem: conditioning on events of measure zero is ambiguous. **Solution:** condition on intervals.

```
observe(D, Interval(x,w))
```

Semantic meaning: rand(D) is in an interval of width w around x.

```
Rejection sampling:
function observe(D,I){
   if(rand(D) not in I){ weight = 0 }
}
```

Solution: don't condition on measure zero events

Problem: conditioning on events of measure zero is ambiguous. **Solution:** condition on intervals.

```
observe(D, Interval(x,w))
```

Semantic meaning: rand(D) is in an interval of width w around x.

Rejection sampling:

```
function observe(D,I){
  if(rand(D) not in I){ weight = 0 }
}
```

Importance sampling:

function observe(D,I){ weight *= probability(D,I) }
For intervals, probability(D,I) is nonzero.

Intervals remove unit anomalies

```
function centimeters(){
 h = rand(Normal(170, 50))
  if(flip(0.5)){
    observe(Normal(180, 10), Interval(h, 10))
  }
}
function meters(){
 h = rand(Normal(1.7, 0.5))
  if(flip(0.5)){
    observe(Normal(1.8, 0.1), Interval(h, 0.1))
  }
ን
```

Intervals remove unit anomalies

```
function centimeters(){
 h = rand(Normal(170, 50))
  if(flip(0.5)){
    observe(Normal(180, 10), Interval(h, 10))
  }
}
function meters(){
  h = rand(Normal(1.7, 0.5))
  if(flip(0.5)){
    observe(Normal(1.8, 0.1), Interval(h, 0.1))
  }
}
```

Same output & no unit errors, even though observe is conditionally executed

Rejection sampling and importance sampling converge to the same answer

We still want to condition on measure zero events

We still want to condition on measure zero events

Idea: parameterize the program by the width of the interval, and take the limit width ightarrow 0

We still want to condition on measure zero events

Idea: parameterize the program by the width of the interval, and take the limit width ightarrow 0

```
function drunk(width){
    h = rand(Normal(1.7, 0.5))
    w = rand(Normal(60, 10))
    if(flip(0.5)){
        observe(Normal(1.8, 0.1), Interval(h, A*width))
    }else{
        observe(Normal(70, 10), Interval(w, B*width))
    }
}
```

Since *width* is unitless, we must introduce constants A and B with units m and kg. The relative size matters even as *width* $\rightarrow 0$!

We still want to condition on measure zero events

Idea: parameterize the program by the width of the interval, and take the limit width ightarrow 0

```
function drunk(width){
    h = rand(Normal(1.7, 0.5))
    w = rand(Normal(60, 10))
    if(flip(0.5)){
        observe(Normal(1.8, 0.1), Int
    }else{
        observe(Normal(70, 10), Inter
    }
}
```

Since *width* is unitless, we must introduce constants A and B with units m and kg. The relative size matters even as *width* $\rightarrow 0$!

We still want to condition on measure zero events

Idea: parameterize the program by the width of the interval, and take the limit width ightarrow 0

```
function drunk(width){
    h = rand(Normal(1.7, 0.5))
    w = rand(Normal(60, 10))
    if(flip(0.5)){
        observe(Normal(1.8, 0.1), Int
    }else{
        observe(Normal(70, 10), Inter
    }
}
```

Since *width* is unitless, we must introduce constants A and B with units m and kg. The relative size matters even as *width* $\rightarrow 0$!

Can we compute the limit $w \rightarrow 0$ directly?

Infinitesimal numbers

Definition

An infinitesimal number is a pair $(r, n) \in \mathbb{R} \times \mathbb{Z}$, which we write as re^{n} .

Infinitesimal numbers

Definition

An infinitesimal number is a pair $(r, n) \in \mathbb{R} \times \mathbb{Z}$, which we write as re^{n} .

$$r\epsilon^{n} \pm s\epsilon^{k} = \begin{cases} (r \pm s)\epsilon^{n} & \text{if } n = k \\ r\epsilon^{n} & \text{if } n < k \\ \pm s\epsilon^{k} & \text{if } n > k \end{cases}$$
$$(r\epsilon^{n}) \cdot (s\epsilon^{k}) = (r \cdot s)\epsilon^{n+k}$$
$$(r\epsilon^{n})/(s\epsilon^{k}) = \begin{cases} (r/s)\epsilon^{n-k} & \text{if } s \neq 0 \\ \text{undefined} & \text{if } s = 0 \end{cases}$$
probability(D, Interval(x, r\epsilon^{n})) = \begin{cases} \operatorname{cdf}(D, x + \frac{1}{2}r) - \operatorname{cdf}(D, x - \frac{1}{2}r) & \text{if } n = 0 \\ \operatorname{pdf}(D, x) \cdot r\epsilon^{n} & \text{if } n > 0 \end{cases}

Infinitesimals give the limit

```
function bmi(width){
 h = rand(Normal(1.70, 0.2))
 w = rand(Normal(70, 30))
  if (flip (0.5)) {
      observe(Normal(2.0,0.1), Interval(h,10*width))
  }else{
      observe(Normal(90,5), Interval(w,width))
  return w / h^2
function meters(width){
 h = rand(Normal(1.7, 0.5))
  if (flip (0.5)) {
      observe(Normal(2.0.0.1), Interval(h.width))
  return h
function decibels(width){
 x = rand(Normal(10.5))
  observe(Normal(15.5). Interval(x.width))
  return x
```


Consistency with non-zero width intervals: observe(D,Interval(x,eps)) gives the same result as observe(D,Interval(x,width)) and then taking the limit width $\rightarrow 0$

Parameter transformations

Intervals give reparameterisation invariance:

A function f maps $Interval(x, \epsilon)$ to $Interval(f(x), f'(x)\epsilon)$.

Parameter transformations

Intervals give reparameterisation invariance:

```
A function f maps Interval(x, \epsilon) to Interval(f(x), f'(x)\epsilon).
```

Original scale:

Answer: 1.75

Parameter transformations

Intervals give reparameterisation invariance:

A function f maps $Interval(x, \epsilon)$ to $Interval(f(x), f'(x)\epsilon)$.

Original scale:

Answer: 1.75

```
Logarithmic scale:
```

Answer: 1.75

Same output ⇒ programs are invariant under choice of scale (unit changes are a special case)

Recap

- Paradoxical behaviour
- Root of the problem: conditioning on measure-zero events is ambiguous
- Approach: rejection sampling as ground truth semantics
- Condition on intervals
- Measure-zero events as Interval(x, eps)
- Removes paradoxical behaviour: invariance under reparameterisations
- Proof of concept in Julia

Comments or questions?

mail@julesjacobs.com

Acknowledgements I thank Sriram Sankaranarayanan and the anonymous POPL reviewers for their outstanding feedback. I'm grateful to Ike Mulder, Arjen Rouvoet, Paolo Giarrusso, Dongho Lee, Ahmad Salim Al-Sibahi, Sam Staton, Christian Weilbach, Alex Lew, and Robbert Krebbers for help, inspiration, and discussions.