Paradoxes of probabilistic programming

and how to condition on events of measure zero with infinitesimal probabilities (to appear at POPL'21)

Jules Jacobs

Radboud University Nijmegen julesjacobs@gmail.com

November 23, 2020

- ▶ Domain specific language for statistical and machine learning models
- Normal programming language extended with rand, observe, and run

Example:

- \blacktriangleright Men's height is distributed according to Normal(1.8, 0.5) meters
- \blacktriangleright Women's height is distributed according to *Normal*(1.7, 0.5) meters
- A scientist randomly samples a man and a woman and compares their height
- ► The scientist tells us that the heights are equal

Question: What's the expected value of the height in this situation?

Example:

- \blacktriangleright Men's height is distributed according to *Normal*(1.8, 0.5) meters
- \triangleright Women's height is distributed according to *Normal*(1.7, 0.5) meters
- A scientist randomly samples a man and a woman and compares their height
- The scientist tells us that the heights are equal

Question: What's the expected value of the height in this situation?

```
function meters(){
  h = rand(Normal(1.7, 0.5))
  observe(Normal(1.8, 0.5), h)
  return h
}
samples = run(meters, 1000)
estimate = average(samples)
```

Example:

- ▶ Men's height is distributed according to *Normal*(1.8, 0.5) meters
- \triangleright Women's height is distributed according to *Normal*(1.7, 0.5) meters
- A scientist randomly samples a man and a woman and compares their height
- The scientist tells us that the heights are equal

Question: What's the expected value of the height in this situation?

```
function meters(){
  h = rand(Normal(1.7, 0.5))
  observe(Normal(1.8, 0.5), h)
  return h
}
samples = run(meters, 1000)
estimate = average(samples)
```

```
Answer: \approx 1.75
```

```
function centimeters(){
  h = rand(Normal(170, 50))
  observe(Normal(180, 50), h)
  return h
}
samples = run(meters, 1000)
estimate = average(samples)
```

Answer: ≈ 175

Suppose the scientist is lazy, and only does the measurement half of the time...

Suppose the scientist is lazy, and only does the measurement half of the time...

Meters:

```
h = rand(Normal(1.7, 0.5))
if(flip(0.5)){
  observe(Normal(1.8, 0.5), h)
}
return h
```

Suppose the scientist is lazy, and only does the measurement half of the time...

Meters:

```
h = rand(Normal(1.7, 0.5))
if(flip(0.5)){
  observe(Normal(1.8, 0.5), h)
}
return h
```

Answer: ≈ 1.721

Centimeters:

```
h = rand(Normal(170, 50))
if(flip(0.5)){
  observe(Normal(180, 50), h)
}
return h
```

Answer: ≈ 170.2

▶ The answer depends on whether the scientist uses meters or centimeters!

Suppose the scientist is lazy, and only does the measurement half of the time...

Meters:

```
h = rand(Normal(1.7, 0.5))
if(flip(0.5)){
  observe(Normal(1.8, 0.5), h)
}
return h
```

Answer: ≈ 1.721

Centimeters:

```
h = rand(Normal(170, 50))
if(flip(0.5)){
  observe(Normal(180, 50), h)
}
return h
```

- ▶ The answer depends on whether the scientist uses meters or centimeters!
- ► Happens if we run this with importance sampling in Anglican

Suppose the scientist is lazy, and only does the measurement half of the time...

Meters:

```
h = rand(Normal(1.7, 0.5))
if(flip(0.5)){
  observe(Normal(1.8, 0.5), h)
}
return h
```

Answer: ≈ 1.721

Centimeters:

```
h = rand(Normal(170, 50))
if(flip(0.5)){
  observe(Normal(180, 50), h)
}
return h
```

- ▶ The answer depends on whether the scientist uses meters or centimeters!
- ► Happens if we run this with importance sampling in Anglican
- ► The issue is fundamental and not limited to Anglican

Suppose the scientist is lazy, and only does the measurement half of the time...

Meters:

```
h = rand(Normal(1.7, 0.5))
if(flip(0.5)){
  observe(Normal(1.8, 0.5), h)
}
return h
```

Answer: ≈ 1.721

Centimeters:

```
h = rand(Normal(170, 50))
if(flip(0.5)){
  observe(Normal(180, 50), h)
}
return h
```

- ▶ The answer depends on whether the scientist uses meters or centimeters!
- ► Happens if we run this with importance sampling in Anglican
- ► The issue is fundamental and not limited to Anglican
- ▶ Even happens in formal operational semantics (e.g. Commutative or Quasi-Borel)

Suppose the scientist is lazy, and only does the measurement half of the time...

Meters:

```
h = rand(Normal(1.7, 0.5))
if(flip(0.5)){
  observe(Normal(1.8, 0.5), h)
}
return h
```

Answer: ≈ 1.721

Centimeters:

```
h = rand(Normal(170, 50))
if(flip(0.5)){
  observe(Normal(180, 50), h)
}
return h
```

- ▶ The answer depends on whether the scientist uses meters or centimeters!
- ► Happens if we run this with importance sampling in Anglican
- ► The issue is fundamental and not limited to Anglican
- ▶ Even happens in formal operational semantics (e.g. Commutative or Quasi-Borel)
- ▶ Unclear what the answer *should* be, or whether this program should be disallowed

Objection: you shouldn't do observe a variable number of times based on coin flip

Suppose the scientist is drunk, and measures the weight half of the time...

Objection: you shouldn't do observe a variable number of times based on coin flip

Suppose the scientist is drunk, and measures the weight half of the time...

```
h = rand(Normal(1.7, 0.5))
w = rand(Normal(60, 10))
if(flip(0.5)){
  observe(Normal(1.8, 0.5), h)
}else{
  observe(Normal(70, 10), w)
}
return h
Answer: ≈ 1.75
```

5/25

Objection: you shouldn't do observe a variable number of times based on coin flip

Suppose the scientist is drunk, and measures the weight half of the time...

```
h = rand(Normal(170, 50))
h = rand(Normal(1.7, 0.5))
w = rand(Normal(60, 10))
                                    w = rand(Normal(60, 10))
if(flip(0.5)){
                                    if(flip(0.5)){
  observe(Normal(1.8, 0.5), h)
                                       observe(Normal(180, 50), h)
}else{
                                    }else{
  observe(Normal(70, 10), w)
                                       observe(Normal(70, 10), w)
return h
                                    return h
Answer: \approx 1.75
                                    Answer: \approx 170
```

- ▶ The same number of observes regardless of the outcome of the coin flip
- ▶ The output still depends on whether we use meters or centimeters

Objection: you shouldn't do observe inside a conditional

Suppose the scientist uses a ruler marked in log scale...

Objection: you shouldn't do observe inside a conditional

Suppose the scientist uses a ruler marked in log scale...

Original program:

```
h = rand(Normal(1.7,0.5))
observe(Normal(1.8,0.5),h)
return h
```

Objection: you shouldn't do observe inside a conditional

Suppose the scientist uses a ruler marked in log scale...

Original program:

h = rand(Normal(1.7,0.5)) observe(Normal(1.8,0.5),h) return h

Answer: 1.75

Logarithmic ruler program:

```
H = rand(LogNormal(1.7,0.5))
observe(LogNormal(1.8,0.5),H)
return log(H)
```

Answer: 1.62

▶ Whether we use linear scale or log scale shouldn't matter, just like meters or centimeters shouldn't matter

Objection: you shouldn't do observe inside a conditional

Suppose the scientist uses a ruler marked in log scale...

Original program:

h = rand(Normal(1.7,0.5)) observe(Normal(1.8,0.5),h) return h

Answer: 1.75

Logarithmic ruler program:

```
H = rand(LogNormal(1.7,0.5))
observe(LogNormal(1.8,0.5),H)
return log(H)
```

- ▶ Whether we use linear scale or log scale shouldn't matter, just like meters or centimeters shouldn't matter
- No conditionals at all, but the output still depends on the scale we use

Objection: you shouldn't do observe inside a conditional

Suppose the scientist uses a ruler marked in log scale...

Original program:

```
h = rand(Normal(1.7,0.5))
observe(Normal(1.8,0.5),h)
return h
```

Answer: 1.75

Logarithmic ruler program:

```
H = rand(LogNormal(1.7,0.5))
observe(LogNormal(1.8,0.5),H)
return log(H)
```

- ► Whether we use linear scale or log scale shouldn't matter, just like meters or centimeters shouldn't matter
- No conditionals at all, but the output still depends on the scale we use
- What do probabilistic programs really mean?

Objection: you shouldn't do observe inside a conditional

Suppose the scientist uses a ruler marked in log scale...

Original program:

```
h = rand(Normal(1.7,0.5))
observe(Normal(1.8,0.5),h)
return h
```

Answer: 1.75

Logarithmic ruler program:

```
H = rand(LogNormal(1.7,0.5))
observe(LogNormal(1.8,0.5),H)
return log(H)
```

- ▶ Whether we use linear scale or log scale shouldn't matter, just like meters or centimeters shouldn't matter
- No conditionals at all, but the output still depends on the scale we use
- What do probabilistic programs really mean?
- What does probililistic conditioning really mean?

Objection: you shouldn't do observe inside a conditional

Suppose the scientist uses a ruler marked in log scale...

Original program:

h = rand(Normal(1.7,0.5)) observe(Normal(1.8,0.5),h) return h

Answer: 1.75

Logarithmic ruler program:

```
H = rand(LogNormal(1.7,0.5))
observe(LogNormal(1.8,0.5),H)
return log(H)
```

- ▶ Whether we use linear scale or log scale shouldn't matter, just like meters or centimeters shouldn't matter
- No conditionals at all, but the output still depends on the scale we use
- What do probabilistic programs really mean?
- ▶ What does probililistic conditioning really mean?
- Related to the Borel-Komolgorov paradox

Overview

Problem:

- ▶ Probabilistic programs are not invariant under parameter transformations
- ▶ It's not clear what observe really means

Overview

Problem:

- Probabilistic programs are not invariant under parameter transformations
- ▶ It's not clear what observe really means

Key ideas:

- 1. Figure out what observe should do, by analogy with the discrete case
- 2. Change the language: observe conditions on intervals instead of points
- 3. Take interval width to be infinitesimally small to condition on measure zero events

Overview

Problem:

- Probabilistic programs are not invariant under parameter transformations
- ▶ It's not clear what observe really means

Key ideas:

- 1. Figure out what observe should do, by analogy with the discrete case
- 2. Change the language: observe conditions on intervals instead of points
- 3. Take interval width to be infinitesimally small to condition on measure zero events

Result:

- ▶ New language is invariant under arbitrary parameter transformations
- Programs have clear probabilistic meaning via rejection sampling
- Implemented as a DSL in Julia

Someone: "I rolled three dice $x, y, z \in \{1, 2, 3, 4, 5, 6\}$ and observed that x + y = z."

What's the probability distribution of x now?

Someone: "I rolled three dice $x, y, z \in \{1, 2, 3, 4, 5, 6\}$ and observed that x + y = z."

```
samples = []
for(i in 1..1000){
    x = rand(DiscreteUniform(1,6))
    y = rand(DiscreteUniform(1,6))
    z = rand(DiscreteUniform(1,6))
    if(z == x + y){
        samples.append(x)
    }
}
```

Someone: "I rolled three dice $x, y, z \in \{1, 2, 3, 4, 5, 6\}$ and observed that x + y = z."

```
samples = []
                            0.4
for(i in 1..1000){
  x = rand(DiscreteUnif
   = rand(DiscreteUnif
  z = rand(DiscreteUnife
  if(z == x + y){
    samples.append(x)
                            0.1
                            0.0
                                            samples (1000)
```

Someone: "I rolled three dice $x, y, z \in \{1, 2, 3, 4, 5, 6\}$ and observed that x + y = z."

```
samples = []
for(i in 1..1000){
  x = rand(DiscreteUnif
  v = rand(DiscreteUnif)
  z = rand(DiscreteUnife
  if(z == x + y){
    samples.append(x)
                            0.1
                            0.0
                                            samples (2000)
```

Someone: "I rolled three dice $x, y, z \in \{1, 2, 3, 4, 5, 6\}$ and observed that x + y = z."

```
samples = []
                            0.4
for(i in 1..1000){
  x = rand(DiscreteUnif
  v = rand(DiscreteUnif)
  z = rand(DiscreteUnife
  if(z == x + y){
    samples.append(x)
                            0.1
                            0.0
                                            samples (3000)
```

Someone: "I rolled three dice $x, y, z \in \{1, 2, 3, 4, 5, 6\}$ and observed that x + y = z."

```
samples = []
                            0.4
for(i in 1..1000){
  x = rand(DiscreteUnif
  v = rand(DiscreteUnif
  z = rand(DiscreteUnife
  if(z == x + y){
    samples.append(x)
                            0.1
                            0.0
                                            samples (10000)
```

Someone: "I rolled three dice $x, y, z \in \{1, 2, 3, 4, 5, 6\}$ and observed that x + y = z."

What's the probability distribution of x now? Use **rejection sampling**:

```
samples = []
for(i in 1..1000){
  x = rand(DiscreteUnif
  v = rand(DiscreteUnif
  z = rand(DiscreteUnif()
  if(z == x + y){
    samples.append(x)
                            0.0
                                           samples (10000)
```

 $\textbf{Key idea:} \ \ \text{answer probabilistic inference questions by repeated simulation} \ + \ \text{filtering}$

Someone: "I rolled three dice $x, y, z \in \{1, 2, 3, 4, 5, 6\}$ and observed that x + y = z."

What's the probability distribution of x now? Use **rejection sampling**:

```
samples = []
for(i in 1..1000){
  x = rand(DiscreteUnif
  v = rand(DiscreteUnif
  z = rand(DiscreteUnife
  if(z == x + y){
    samples.append(x)
                           0.0
                                           samples (10000)
```

Key idea: answer probabilistic inference questions by repeated simulation + filtering \implies **Probabilistic Programming Language** = **DSL for probabilistic simulations**

Probabilistic programming language:

- ► Normal programming language + rand(D)
- observe(b) filtering/conditioning
- run(func, k) run simulation func() k times, return array of samples

Probabilistic programming language:

- ► Normal programming language + rand(D)
- observe(b) filtering/conditioning
- ▶ run(func, k) run simulation func() k times, return array of samples

```
function threeDice(){
   x = rand(DiscreteUniform(1,6))
   y = rand(DiscreteUniform(1,6))
   z = rand(DiscreteUniform(1,6))
   observe(z == x + y)
   return x
}
samples = run(threeDice, 1000)
```

Probabilistic programming language:

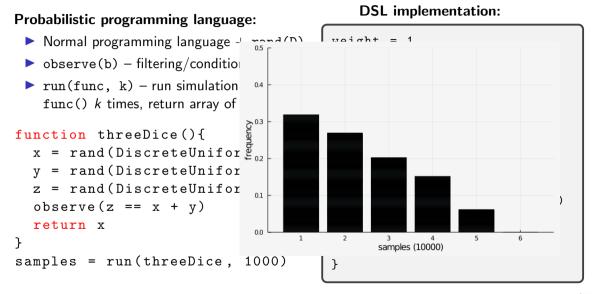
- ► Normal programming language + rand(D)
- observe(b) filtering/conditioning
- ▶ run(func, k) run simulation func() k times, return array of samples

```
function threeDice(){
   x = rand(DiscreteUniform(1,6))
   y = rand(DiscreteUniform(1,6))
   z = rand(DiscreteUniform(1,6))
   observe(z == x + y)
   return x
}
samples = run(threeDice, 1000)
```

DSL implementation:

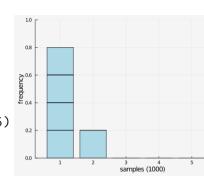
```
weight = 1
function observe(b){
  if(!b) weight = 0
function run(func, k){
  samples = []
  for(i in 1..k){
    weight = 1
    result = func()
    if(weight == 1){
      samples.append(result)
  return samples
```

Probabilistic programming 101: DSL rejection sampling

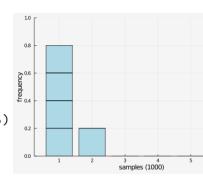


```
function multiDice(){
x = rand(DiscreteUniform(1.6))
 for (i in 1:x){
 v = rand(DiscreteUniform(1,6))
  observe(rand(DiscreteUniform(1,y)) == 3)
 observe(rand(DiscreteUniform(1,6))+x == 5)
 return x
samples = run(multiDice, 1000)
```

```
function multiDice(){
x = rand(DiscreteUniform(1.6))
 for(i in 1:x){
 y = rand(DiscreteUniform(1,6))
  observe(rand(DiscreteUniform(1,y)) == 3)
 observe(rand(DiscreteUniform(1,6))+x == 5)
 return x
samples = run(multiDice, 1000)
```

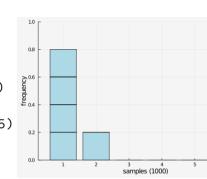


```
function multiDice(){
 x = rand(DiscreteUniform(1.6))
 for (i in 1:x){
  v = rand(DiscreteUniform(1.6))
  observe(rand(DiscreteUniform(1,y)) == 3)
 observe(rand(DiscreteUniform(1,6))+x == 5)
 return x
samples = run(multiDice, 1000)
```



Problem: most samples get rejected ⇒ convergence is slow

```
function multiDice(){
 x = rand(DiscreteUniform(1.6))
 for (i in 1:x){
 v = rand(DiscreteUniform(1,6))
  observe(rand(DiscreteUniform(1,y)) == 3)
 observe(rand(DiscreteUniform(1,6))+x == 5)
 return x
samples = run(multiDice, 1000)
```

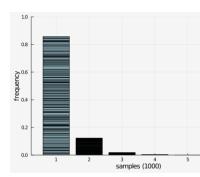


Problem: most samples get rejected \implies convergence is slow **Solution:**

- ▶ change observe(rand(D) == x) \mapsto observe(D,x)
- function observe(D,x){ weight *= probability(D,x) }
- weights are now numbers between 0..1 instead of only 0,1
- run returns an array of weighted samples

Probabilistic programming 101: importance sampling

```
function multiDice(){
 x = rand(DiscreteUniform(1.6))
 for (i in 1:x){
 v = rand(DiscreteUniform(1,6))
  observe(DiscreteUniform(1,y), 3)
 }
 observe(DiscreteUniform(1,6), 5-x)
 return x
samples = run(multiDice, 1000)
```



Problem: most samples get rejected ⇒ convergence is slow **Solution:**

- ▶ change observe(rand(D) == x) \mapsto observe(D,x)
- function observe(D,x){ weight *= probability(D,x) }
- ▶ weights are now numbers between 0..1 instead of only 0,1
- run returns an array of weighted samples

Probabilistic programming 101: continuous distributions

Continuous distributions are problematic because probability(D,x) = 0.

When doing observe(D, x) for continuous distributions D,

- ▶ Rejection sampling rejects 100% of the trials
- ▶ Importance sampling only produces trials with weight = 0

Probabilistic programming 101: continuous distributions

Continuous distributions are problematic because probability(D,x) = 0.

When doing observe(D, x) for continuous distributions D,

- ► Rejection sampling rejects 100% of the trials
- ▶ Importance sampling only produces trials with weight = 0

Standard solution: use the probability density function pdf(D,x) instead.

$$cdf(D, x) = \mathbb{P}[rand(D) < x]$$

 $pdf(D, x) = \frac{d}{dx}cdf(D, x)$

Intuition: $pdf(D, x) \propto the probability that <math>rand(D)$ is close to x.

```
function observe(D,x){ weight *= pdf(D,x) }
```

Probabilistic programming 101: continuous distributions

Continuous distributions are problematic because probability(D,x) = 0.

When doing observe(D, x) for continuous distributions D,

- ► Rejection sampling rejects 100% of the trials
- ► Importance sampling only produces trials with weight = 0

Standard solution: use the probability density function pdf(D,x) instead.

$$cdf(D, x) = \mathbb{P}[rand(D) < x]$$

 $pdf(D, x) = \frac{d}{dx}cdf(D, x)$

Intuition: $pdf(D, x) \propto the probability that <math>rand(D)$ is close to x.

function observe(D,x){ weight *= pdf(D,x) }

This is the source of the strange behaviour!

What went wrong: conditionals

Recall the drunk scientist:

```
if(flip(0.5)){
  observe(Normal(1.8, 0.5), h)
}else{
  observe(Normal(70, 10), w)
}
```

What went wrong: conditionals

Recall the drunk scientist:

```
if(flip(0.5)){
  observe(Normal(1.8, 0.5), h)
}else{
  observe(Normal(70, 10), w)
}
```

- An observe(D, x) call multiplies the weight by pdf(D, x)
- ▶ The pdf is not unitless! pdf(Normal $(\mu, \sigma), x$) = $\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$
- ▶ The weight has units m^{-1} in some trials and kg^{-1} in other trials
- ▶ Results in unit errors when computing the weighted average:

$$\mathbb{E}[bmi] \approx \frac{\sum_{k=1}^{N} (weight_k) \cdot (bmi_k)}{\sum_{k=1}^{N} (weight_k)}$$

► The sum adds $m^{-1} + kg^{-1}$!

What went wrong: nonlinear parameter transformations

Recall the log scale scientist:

```
observe(Normal(1.8, 0.5), h) vs observe(LogNormal(1.8, 0.5), H)
```

Conditioning on events of measure zero is ambiguous!

What went wrong: nonlinear parameter transformations

Recall the log scale scientist:

observe(Normal(1.8, 0.5), h) vs observe(LogNormal(1.8, 0.5), H)

Conditioning on events of measure zero is ambiguous!

$$A_{\epsilon} = \{(x, y) \in \mathbb{R}^2 : |x - y| \le \epsilon\}$$

$$B_{\epsilon} = \{(x, y) \in \mathbb{R}^2 : |\exp(x) - \exp(y)| \le \epsilon\}$$

What went wrong: nonlinear parameter transformations

Recall the log scale scientist:

```
observe(Normal(1.8, 0.5), h) vs observe(LogNormal(1.8, 0.5), H)
```

Conditioning on events of measure zero is ambiguous!

$$A_{\epsilon} = \{(x, y) \in \mathbb{R}^2 : |x - y| \le \epsilon\}$$

$$B_{\epsilon} = \{(x, y) \in \mathbb{R}^2 : |\exp(x) - \exp(y)| \le \epsilon\}$$

"Although the sequences A_{ϵ} and B_{ϵ} tend to the same limit "x=y", the conditional densities $\mathbb{P}(x|A_{\epsilon})$ and $\mathbb{P}(x|B_{\epsilon})$ tend to different limits. As we see from this, merely to specify "x=y" without any qualifications is ambiguous. Whenever we have a probability density on one space and we wish to generate from it one on a subspace of measure zero, the only safe procedure is to pass to an explicitly defined limit by a process like A_{ϵ} and B_{ϵ} . In general, the final result will and must depend on which limiting operation was specified. This is extremely counter-intuitive at first hearing; yet it becomes obvious when the reason for it is understood."

– E.T. Jaynes (paraphrased)

Solution: don't condition on measure zero events

Problem: conditioning on events of measure zero is ambiguous.

Solution: condition on intervals.

observe(D, Interval(x,w))

Meaning: rand(D) is in an interval of width w around x.

Solution: don't condition on measure zero events

Problem: conditioning on events of measure zero is ambiguous.

Solution: condition on intervals.

```
observe(D, Interval(x,w))
```

Meaning: rand(D) is in an interval of width w around x.

Rejection sampling:

```
function observe(D,I){
  if(abs(rand(D) - I.midpoint) > I.width/2){ weight = 0 }
}
```

Solution: don't condition on measure zero events

Problem: conditioning on events of measure zero is ambiguous.

Solution: condition on intervals.

```
observe(D, Interval(x,w))
```

Meaning: rand(D) is in an interval of width w around x.

Rejection sampling:

```
function observe(D,I){
  if(abs(rand(D) - I.midpoint) > I.width/2){ weight = 0 }
}
```

Importance sampling:

```
function observe(D,I){
  x = I.midpoint
  w = I.width
  weight *= cdf(D, x + w/2) - cdf(D, x - w/2)
}
```

Example of conditioning on intervals

Example:

```
function centimeters(){
 h = rand(Normal(170, 50))
  if (rand(Bernoulli(0.5))){
    observe(Normal(180, 10), Interval(h, 10))
function meters(){
 h = rand(Normal(1.7, 0.5))
  if (rand(Bernoulli(0.5))){
    observe(Normal(1.8, 0.1), Interval(h, 0.1))
```

Example of conditioning on intervals

Example:

```
function centimeters(){
 h = rand(Normal(170, 50))
  if (rand(Bernoulli(0.5))){
    observe(Normal(180, 10), Interval(h, 10))
function meters(){
 h = rand(Normal(1.7, 0.5))
  if (rand (Bernoulli (0.5))) {
    observe(Normal(1.8, 0.1), Interval(h, 0.1))
```

Same output & no unit errors!

Example of conditioning on intervals

Example:

```
function centimeters(){
 h = rand(Normal(170, 50))
  if (rand(Bernoulli(0.5))){
    observe(Normal(180, 10), Interval(h, 10))
function meters(){
 h = rand(Normal(1.7, 0.5))
  if (rand (Bernoulli (0.5))){
    observe(Normal(1.8, 0.1), Interval(h, 0.1))
```

Same output & no unit errors!

Rejection sampling and importance sampling converge to the same answer!

We still want to condition on measure zero events

We still want to condition on measure zero events

Idea: parameterize the program by the width of the interval, and take the limit width o 0

We still want to condition on measure zero events

Idea: parameterize the program by the width of the interval, and take the limit $width \rightarrow 0$

```
function drunk(width){
  h = rand(Normal(1.7, 0.5))
  w = rand(Normal(60, 10))
  if(rand(Bernoulli(0.5))){
    observe(Normal(1.8, 0.1), Interval(h, A*width))
  }else{
    observe(Normal(70, 10), Interval(w, B*width))
  }
}
```

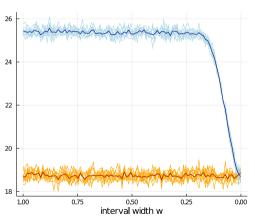
Since *width* is unitless, we must introduce constants A and B with units m and kg. The relative size matters even as $width \rightarrow 0$!

We still want to condition on measure zero events

Idea: parameterize the program by the width of the interval, and take the limit width
ightarrow 0

```
function drunk(width){
  h = rand(Normal(1.7, 0.5))
  w = rand(Normal(60, 10))
  if(rand(Bernoulli(0.5))){
    observe(Normal(1.8, 0.1), Int
  }else{
    observe(Normal(70, 10), Inter
  }
}
```

Since *width* is unitless, we must introduce constants A and B with units m and kg. The relative size matters even as $width \rightarrow 0$!

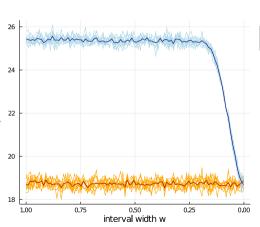


We still want to condition on measure zero events

Idea: parameterize the program by the width of the interval, and take the limit $width \rightarrow 0$

```
function drunk(width){
  h = rand(Normal(1.7, 0.5))
  w = rand(Normal(60, 10))
  if(rand(Bernoulli(0.5))){
    observe(Normal(1.8, 0.1), Int
  }else{
    observe(Normal(70, 10), Inter
  }
}
```

Since width is unitless, we must introduce constants A and B with units m and kg. The relative size matters even as width $\rightarrow 0!$



Can we compute the limit $w \to 0$ directly?

Definition

An infinitesimal number is a pair $(r, n) \in \mathbb{R} \times \mathbb{Z}$, which we write as $r\epsilon^n$.

Definition

An infinitesimal number is a pair $(r, n) \in \mathbb{R} \times \mathbb{Z}$, which we write as $r\epsilon^n$.

Arithmetic with infinitesimals:

$$r\epsilon^n \pm s\epsilon^k = egin{cases} (r\pm s)\epsilon^n & ext{if } n=k \ r\epsilon^n & ext{if } n < k \ \pm s\epsilon^k & ext{if } n > k \end{cases}$$
 $(r\epsilon^n) \cdot (s\epsilon^k) = (r\cdot s)\epsilon^{n+k}$ $(r\epsilon^n)/(s\epsilon^k) = egin{cases} (r/s)\epsilon^{n-k} & ext{if } s
eq 0 \ ext{undefined} & ext{if } s = 0 \end{cases}$

The probability that rand(D) lies in the interval $[x - r\epsilon^n, x + r\epsilon^n]$:

$$P(D, \mathsf{Interval}(x, r\epsilon^n)) = \begin{cases} \mathsf{cdf}(D, x + \frac{1}{2}r) - \mathsf{cdf}(D, x - \frac{1}{2}r) & \text{if } n = 0\\ \mathsf{pdf}(D, x) \cdot r\epsilon^n & \text{if } n > 0 \end{cases}$$

The probability that rand(D) lies in the interval $[x - r\epsilon^n, x + r\epsilon^n]$:

$$P(D, \mathsf{Interval}(x, r\epsilon^n)) = \begin{cases} \mathsf{cdf}(D, x + \frac{1}{2}r) - \mathsf{cdf}(D, x - \frac{1}{2}r) & \text{if } n = 0\\ \mathsf{pdf}(D, x) \cdot r\epsilon^n & \text{if } n > 0 \end{cases}$$

Infinitesimals unify cdf and pdf!

Theorem

If f(x) is given by a "probability expression" and $f(\epsilon) = r\epsilon^n$, then $\lim_{x\to 0} \frac{f(x)}{x^n} = r$.

Theorem

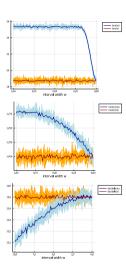
If f(x) is given by a "probability expression" and $f(\epsilon) = r\epsilon^n$, then $\lim_{x\to 0} \frac{f(x)}{x^n} = r$.

Definition

We say that f(x) is a "probability expression" in the variable x if f(x) is defined using the operations $+,-,\cdot,/$, constants, and $P(D,\operatorname{Interval}(s,rx))$ where $r,s\in\mathbb{R}$ are constants, and D is a probability distribution with differentiable cdf.

Example programs:

```
function bmi(width){
 h = rand(Normal(1.70, 0.2))
 w = rand(Normal(70.30))
  if (rand (Bernoulli (0.5))) {
      observe(Normal(2.0,0.1), Interval(h,10*width))
  }else{
      observe(Normal(90.5), Interval(w.width))
  return w / h^2
function meters(width){
 h = rand(Normal(1.7, 0.5))
  if (rand (Bernoulli (0.5))) {
      observe(Normal(2.0.0.1), Interval(h, width))
  return h
function decibels (width) {
 x = rand(Normal(10.5))
  observe(Normal(15.5).Interval(x.width))
  return v
```



Theorem works: we can condition on events of measure zero without paradoxes

The factor in front of ϵ allows us to do parameter transformations correctly:

A function f maps $Interval(x, \epsilon)$ to $Interval(f(x), f'(x)\epsilon)$.

The factor in front of ϵ allows us to do parameter transformations correctly:

A function f maps $Interval(x, \epsilon)$ to $Interval(f(x), f'(x)\epsilon)$.

Original program:

Answer: 1.75

The factor in front of ϵ allows us to do parameter transformations correctly:

A function f maps $Interval(x, \epsilon)$ to $Interval(f(x), f'(x)\epsilon)$.

Original program:

return h

Answer: 1.75

Logarithmic ruler program:

Answer: 1.75

Same output ⇒ parameter transformation correctly applied

Language support for parameter transformations $f : \mathbb{R} \to \mathbb{R}$.

- ▶ Define f(D) for distributions by defining rand, pdf, cdf of f(D)
- ightharpoonup Define f(I) for finite width intervals and infinitesimal width intervals

Requires that f is monotone and differentiable.

Examples: f(x) = 100x and $f(x) = \exp(x)$.

Language support for parameter transformations $f : \mathbb{R} \to \mathbb{R}$.

- ▶ Define f(D) for distributions by defining rand, pdf, cdf of f(D)
- ightharpoonup Define f(I) for finite width intervals and infinitesimal width intervals

Requires that f is monotone and differentiable.

Examples:
$$f(x) = 100x$$
 and $f(x) = \exp(x)$.

Property:

Is equivalent to:

⇒ programs are invariant under parameter transformations

Recap

- Paradoxical behaviour: seemingly equivalent probabilistic programs give different outputs
- ▶ Root of the problem: conditioning on measure-zero events is ambiguous
- Solution: condition on intervals
- Restores rejection sampling as ground truth semantics
- Model measure-zero events as a limit, computed using infinitesimal arithmetic
- ► Semantics of observe(D, Interval(x, eps)) agrees with the old observe(D, x) in most cases
- Programs are now invariant under parameter transformations
- ► Implementation in Julia

Comments or questions?

julesjacobs@gmail.com

Acknowledgements I thank Sriram Sankaranarayanan and the anonymous POPL reviewers for their outstanding feedback. I'm grateful to Ike Mulder, Arjen Rouvoet, Paolo Giarrusso, Dongho Lee, Ahmad Salim Al-Sibahi, Sam Staton, Christian Weilbach, and Robbert Krebbers for help, inspiration, and discussions.