
Paradoxes of probabilistic programming
and how to condition on events of measure zero with infinitesimal probabilities

(to appear at POPL’21)

Jules Jacobs

Radboud University Nijmegen
julesjacobs@gmail.com

November 23, 2020

1 / 25

mailto:julesjacobs@gmail.com

Probabilistic programming

I Domain specific language for statistical and machine learning models

I Normal programming language extended with rand, observe, and run

2 / 25

Probabilistic programming
Example:

I Men’s height is distributed according to Normal(1.8, 0.5) meters

I Women’s height is distributed according to Normal(1.7, 0.5) meters

I A scientist randomly samples a man and a woman and compares their height

I The scientist tells us that the heights are equal

Question: What’s the expected value of the height in this situation?

function meters (){

h = rand(Normal (1.7, 0.5))

observe(Normal (1.8, 0.5), h)

return h

}

samples = run(meters , 1000)

estimate = average(samples)

Answer: ≈ 1.75

function centimeters (){

h = rand(Normal (170, 50))

observe(Normal (180, 50), h)

return h

}

samples = run(meters , 1000)

estimate = average(samples)

Answer: ≈ 175

3 / 25

Probabilistic programming
Example:

I Men’s height is distributed according to Normal(1.8, 0.5) meters

I Women’s height is distributed according to Normal(1.7, 0.5) meters

I A scientist randomly samples a man and a woman and compares their height

I The scientist tells us that the heights are equal

Question: What’s the expected value of the height in this situation?

function meters (){

h = rand(Normal (1.7, 0.5))

observe(Normal (1.8, 0.5), h)

return h

}

samples = run(meters , 1000)

estimate = average(samples)

Answer: ≈ 1.75

function centimeters (){

h = rand(Normal (170, 50))

observe(Normal (180, 50), h)

return h

}

samples = run(meters , 1000)

estimate = average(samples)

Answer: ≈ 175

3 / 25

Probabilistic programming
Example:

I Men’s height is distributed according to Normal(1.8, 0.5) meters

I Women’s height is distributed according to Normal(1.7, 0.5) meters

I A scientist randomly samples a man and a woman and compares their height

I The scientist tells us that the heights are equal

Question: What’s the expected value of the height in this situation?

function meters (){

h = rand(Normal (1.7, 0.5))

observe(Normal (1.8, 0.5), h)

return h

}

samples = run(meters , 1000)

estimate = average(samples)

Answer: ≈ 1.75

function centimeters (){

h = rand(Normal (170, 50))

observe(Normal (180, 50), h)

return h

}

samples = run(meters , 1000)

estimate = average(samples)

Answer: ≈ 175
3 / 25

Paradox 1
Suppose the scientist is lazy, and only does the measurement half of the time...

Meters:

h = rand(Normal (1.7, 0.5))

if(flip (0.5)){

observe(Normal (1.8, 0.5), h)

}

return h

Answer: ≈ 1.721

Centimeters:

h = rand(Normal (170, 50))

if(flip (0.5)){

observe(Normal (180, 50), h)

}

return h

Answer: ≈ 170.2

I The answer depends on whether the scientist uses meters or centimeters!

I Happens if we run this with importance sampling in Anglican

I The issue is fundamental and not limited to Anglican

I Even happens in formal operational semantics (e.g. Commutative or Quasi-Borel)

I Unclear what the answer should be, or whether this program should be disallowed

4 / 25

Paradox 1
Suppose the scientist is lazy, and only does the measurement half of the time...

Meters:

h = rand(Normal (1.7, 0.5))

if(flip (0.5)){

observe(Normal (1.8, 0.5), h)

}

return h

Answer: ≈ 1.721

Centimeters:

h = rand(Normal (170, 50))

if(flip (0.5)){

observe(Normal (180, 50), h)

}

return h

Answer: ≈ 170.2

I The answer depends on whether the scientist uses meters or centimeters!

I Happens if we run this with importance sampling in Anglican

I The issue is fundamental and not limited to Anglican

I Even happens in formal operational semantics (e.g. Commutative or Quasi-Borel)

I Unclear what the answer should be, or whether this program should be disallowed

4 / 25

Paradox 1
Suppose the scientist is lazy, and only does the measurement half of the time...

Meters:

h = rand(Normal (1.7, 0.5))

if(flip (0.5)){

observe(Normal (1.8, 0.5), h)

}

return h

Answer: ≈ 1.721

Centimeters:

h = rand(Normal (170, 50))

if(flip (0.5)){

observe(Normal (180, 50), h)

}

return h

Answer: ≈ 170.2

I The answer depends on whether the scientist uses meters or centimeters!

I Happens if we run this with importance sampling in Anglican

I The issue is fundamental and not limited to Anglican

I Even happens in formal operational semantics (e.g. Commutative or Quasi-Borel)

I Unclear what the answer should be, or whether this program should be disallowed

4 / 25

Paradox 1
Suppose the scientist is lazy, and only does the measurement half of the time...

Meters:

h = rand(Normal (1.7, 0.5))

if(flip (0.5)){

observe(Normal (1.8, 0.5), h)

}

return h

Answer: ≈ 1.721

Centimeters:

h = rand(Normal (170, 50))

if(flip (0.5)){

observe(Normal (180, 50), h)

}

return h

Answer: ≈ 170.2

I The answer depends on whether the scientist uses meters or centimeters!

I Happens if we run this with importance sampling in Anglican

I The issue is fundamental and not limited to Anglican

I Even happens in formal operational semantics (e.g. Commutative or Quasi-Borel)

I Unclear what the answer should be, or whether this program should be disallowed

4 / 25

Paradox 1
Suppose the scientist is lazy, and only does the measurement half of the time...

Meters:

h = rand(Normal (1.7, 0.5))

if(flip (0.5)){

observe(Normal (1.8, 0.5), h)

}

return h

Answer: ≈ 1.721

Centimeters:

h = rand(Normal (170, 50))

if(flip (0.5)){

observe(Normal (180, 50), h)

}

return h

Answer: ≈ 170.2

I The answer depends on whether the scientist uses meters or centimeters!

I Happens if we run this with importance sampling in Anglican

I The issue is fundamental and not limited to Anglican

I Even happens in formal operational semantics (e.g. Commutative or Quasi-Borel)

I Unclear what the answer should be, or whether this program should be disallowed

4 / 25

Paradox 1
Suppose the scientist is lazy, and only does the measurement half of the time...

Meters:

h = rand(Normal (1.7, 0.5))

if(flip (0.5)){

observe(Normal (1.8, 0.5), h)

}

return h

Answer: ≈ 1.721

Centimeters:

h = rand(Normal (170, 50))

if(flip (0.5)){

observe(Normal (180, 50), h)

}

return h

Answer: ≈ 170.2

I The answer depends on whether the scientist uses meters or centimeters!

I Happens if we run this with importance sampling in Anglican

I The issue is fundamental and not limited to Anglican

I Even happens in formal operational semantics (e.g. Commutative or Quasi-Borel)

I Unclear what the answer should be, or whether this program should be disallowed

4 / 25

Paradox 1
Suppose the scientist is lazy, and only does the measurement half of the time...

Meters:

h = rand(Normal (1.7, 0.5))

if(flip (0.5)){

observe(Normal (1.8, 0.5), h)

}

return h

Answer: ≈ 1.721

Centimeters:

h = rand(Normal (170, 50))

if(flip (0.5)){

observe(Normal (180, 50), h)

}

return h

Answer: ≈ 170.2

I The answer depends on whether the scientist uses meters or centimeters!

I Happens if we run this with importance sampling in Anglican

I The issue is fundamental and not limited to Anglican

I Even happens in formal operational semantics (e.g. Commutative or Quasi-Borel)

I Unclear what the answer should be, or whether this program should be disallowed
4 / 25

Paradox 2
Objection: you shouldn’t do observe a variable number of times based on coin flip

Suppose the scientist is drunk, and measures the weight half of the time...

h = rand(Normal (1.7, 0.5))

w = rand(Normal (60, 10))

if(flip (0.5)){

observe(Normal (1.8, 0.5), h)

}else{

observe(Normal (70, 10), w)

}

return h

Answer: ≈ 1.75

h = rand(Normal (170, 50))

w = rand(Normal (60, 10))

if(flip (0.5)){

observe(Normal (180, 50), h)

}else{

observe(Normal (70, 10), w)

}

return h

Answer: ≈ 170

I The same number of observes regardless of the outcome of the coin flip

I The output still depends on whether we use meters or centimeters

5 / 25

Paradox 2
Objection: you shouldn’t do observe a variable number of times based on coin flip

Suppose the scientist is drunk, and measures the weight half of the time...

h = rand(Normal (1.7, 0.5))

w = rand(Normal (60, 10))

if(flip (0.5)){

observe(Normal (1.8, 0.5), h)

}else{

observe(Normal (70, 10), w)

}

return h

Answer: ≈ 1.75

h = rand(Normal (170, 50))

w = rand(Normal (60, 10))

if(flip (0.5)){

observe(Normal (180, 50), h)

}else{

observe(Normal (70, 10), w)

}

return h

Answer: ≈ 170

I The same number of observes regardless of the outcome of the coin flip

I The output still depends on whether we use meters or centimeters

5 / 25

Paradox 2
Objection: you shouldn’t do observe a variable number of times based on coin flip

Suppose the scientist is drunk, and measures the weight half of the time...

h = rand(Normal (1.7, 0.5))

w = rand(Normal (60, 10))

if(flip (0.5)){

observe(Normal (1.8, 0.5), h)

}else{

observe(Normal (70, 10), w)

}

return h

Answer: ≈ 1.75

h = rand(Normal (170, 50))

w = rand(Normal (60, 10))

if(flip (0.5)){

observe(Normal (180, 50), h)

}else{

observe(Normal (70, 10), w)

}

return h

Answer: ≈ 170

I The same number of observes regardless of the outcome of the coin flip

I The output still depends on whether we use meters or centimeters

5 / 25

Paradox 3
Objection: you shouldn’t do observe inside a conditional

Suppose the scientist uses a ruler marked in log scale...

Original program:

h = rand(Normal (1.7 ,0.5))

observe(Normal (1.8 ,0.5) ,h)

return h

Answer: 1.75

Logarithmic ruler program:

H = rand(LogNormal (1.7 ,0.5))

observe(LogNormal (1.8 ,0.5) ,H)

return log(H)

Answer: 1.62

I Whether we use linear scale or log scale shouldn’t matter, just like meters or centimeters
shouldn’t matter

I No conditionals at all, but the output still depends on the scale we use
I What do probabilistic programs really mean?
I What does probililistic conditioning really mean?
I Related to the Borel-Komolgorov paradox

6 / 25

Paradox 3
Objection: you shouldn’t do observe inside a conditional

Suppose the scientist uses a ruler marked in log scale...

Original program:

h = rand(Normal (1.7 ,0.5))

observe(Normal (1.8 ,0.5) ,h)

return h

Answer: 1.75

Logarithmic ruler program:

H = rand(LogNormal (1.7 ,0.5))

observe(LogNormal (1.8 ,0.5) ,H)

return log(H)

Answer: 1.62

I Whether we use linear scale or log scale shouldn’t matter, just like meters or centimeters
shouldn’t matter

I No conditionals at all, but the output still depends on the scale we use
I What do probabilistic programs really mean?
I What does probililistic conditioning really mean?
I Related to the Borel-Komolgorov paradox

6 / 25

Paradox 3
Objection: you shouldn’t do observe inside a conditional

Suppose the scientist uses a ruler marked in log scale...

Original program:

h = rand(Normal (1.7 ,0.5))

observe(Normal (1.8 ,0.5) ,h)

return h

Answer: 1.75

Logarithmic ruler program:

H = rand(LogNormal (1.7 ,0.5))

observe(LogNormal (1.8 ,0.5) ,H)

return log(H)

Answer: 1.62

I Whether we use linear scale or log scale shouldn’t matter, just like meters or centimeters
shouldn’t matter

I No conditionals at all, but the output still depends on the scale we use
I What do probabilistic programs really mean?
I What does probililistic conditioning really mean?
I Related to the Borel-Komolgorov paradox

6 / 25

Paradox 3
Objection: you shouldn’t do observe inside a conditional

Suppose the scientist uses a ruler marked in log scale...

Original program:

h = rand(Normal (1.7 ,0.5))

observe(Normal (1.8 ,0.5) ,h)

return h

Answer: 1.75

Logarithmic ruler program:

H = rand(LogNormal (1.7 ,0.5))

observe(LogNormal (1.8 ,0.5) ,H)

return log(H)

Answer: 1.62

I Whether we use linear scale or log scale shouldn’t matter, just like meters or centimeters
shouldn’t matter

I No conditionals at all, but the output still depends on the scale we use

I What do probabilistic programs really mean?
I What does probililistic conditioning really mean?
I Related to the Borel-Komolgorov paradox

6 / 25

Paradox 3
Objection: you shouldn’t do observe inside a conditional

Suppose the scientist uses a ruler marked in log scale...

Original program:

h = rand(Normal (1.7 ,0.5))

observe(Normal (1.8 ,0.5) ,h)

return h

Answer: 1.75

Logarithmic ruler program:

H = rand(LogNormal (1.7 ,0.5))

observe(LogNormal (1.8 ,0.5) ,H)

return log(H)

Answer: 1.62

I Whether we use linear scale or log scale shouldn’t matter, just like meters or centimeters
shouldn’t matter

I No conditionals at all, but the output still depends on the scale we use
I What do probabilistic programs really mean?

I What does probililistic conditioning really mean?
I Related to the Borel-Komolgorov paradox

6 / 25

Paradox 3
Objection: you shouldn’t do observe inside a conditional

Suppose the scientist uses a ruler marked in log scale...

Original program:

h = rand(Normal (1.7 ,0.5))

observe(Normal (1.8 ,0.5) ,h)

return h

Answer: 1.75

Logarithmic ruler program:

H = rand(LogNormal (1.7 ,0.5))

observe(LogNormal (1.8 ,0.5) ,H)

return log(H)

Answer: 1.62

I Whether we use linear scale or log scale shouldn’t matter, just like meters or centimeters
shouldn’t matter

I No conditionals at all, but the output still depends on the scale we use
I What do probabilistic programs really mean?
I What does probililistic conditioning really mean?

I Related to the Borel-Komolgorov paradox

6 / 25

Paradox 3
Objection: you shouldn’t do observe inside a conditional

Suppose the scientist uses a ruler marked in log scale...

Original program:

h = rand(Normal (1.7 ,0.5))

observe(Normal (1.8 ,0.5) ,h)

return h

Answer: 1.75

Logarithmic ruler program:

H = rand(LogNormal (1.7 ,0.5))

observe(LogNormal (1.8 ,0.5) ,H)

return log(H)

Answer: 1.62

I Whether we use linear scale or log scale shouldn’t matter, just like meters or centimeters
shouldn’t matter

I No conditionals at all, but the output still depends on the scale we use
I What do probabilistic programs really mean?
I What does probililistic conditioning really mean?
I Related to the Borel-Komolgorov paradox

6 / 25

Overview

Problem:

I Probabilistic programs are not invariant under parameter transformations

I It’s not clear what observe really means

Key ideas:

1. Figure out what observe should do, by analogy with the discrete case

2. Change the language: observe conditions on intervals instead of points

3. Take interval width to be infinitesimally small to condition on measure zero events

Result:

I New language is invariant under arbitrary parameter transformations

I Programs have clear probabilistic meaning via rejection sampling

I Implemented as a DSL in Julia

7 / 25

Overview

Problem:

I Probabilistic programs are not invariant under parameter transformations

I It’s not clear what observe really means

Key ideas:

1. Figure out what observe should do, by analogy with the discrete case

2. Change the language: observe conditions on intervals instead of points

3. Take interval width to be infinitesimally small to condition on measure zero events

Result:

I New language is invariant under arbitrary parameter transformations

I Programs have clear probabilistic meaning via rejection sampling

I Implemented as a DSL in Julia

7 / 25

Overview

Problem:

I Probabilistic programs are not invariant under parameter transformations

I It’s not clear what observe really means

Key ideas:

1. Figure out what observe should do, by analogy with the discrete case

2. Change the language: observe conditions on intervals instead of points

3. Take interval width to be infinitesimally small to condition on measure zero events

Result:

I New language is invariant under arbitrary parameter transformations

I Programs have clear probabilistic meaning via rejection sampling

I Implemented as a DSL in Julia

7 / 25

Probabilistic programming 101: manual rejection sampling
Someone: “I rolled three dice x , y , z ∈ {1, 2, 3, 4, 5, 6} and observed that x + y = z .”

What’s the probability distribution of x now?

Use rejection sampling:

samples = []

for(i in 1..1000){

x = rand(DiscreteUniform (1 ,6))

y = rand(DiscreteUniform (1 ,6))

z = rand(DiscreteUniform (1 ,6))

if(z == x + y){

samples.append(x)

}

}

Key idea: answer probabilistic inference questions by repeated simulation + filtering =⇒
Probabilistic Programming Language = DSL for probabilistic simulations

8 / 25

Probabilistic programming 101: manual rejection sampling
Someone: “I rolled three dice x , y , z ∈ {1, 2, 3, 4, 5, 6} and observed that x + y = z .”

What’s the probability distribution of x now? Use rejection sampling:

samples = []

for(i in 1..1000){

x = rand(DiscreteUniform (1 ,6))

y = rand(DiscreteUniform (1 ,6))

z = rand(DiscreteUniform (1 ,6))

if(z == x + y){

samples.append(x)

}

}

Key idea: answer probabilistic inference questions by repeated simulation + filtering =⇒
Probabilistic Programming Language = DSL for probabilistic simulations

8 / 25

Probabilistic programming 101: manual rejection sampling
Someone: “I rolled three dice x , y , z ∈ {1, 2, 3, 4, 5, 6} and observed that x + y = z .”

What’s the probability distribution of x now? Use rejection sampling:

samples = []

for(i in 1..1000){

x = rand(DiscreteUniform (1 ,6))

y = rand(DiscreteUniform (1 ,6))

z = rand(DiscreteUniform (1 ,6))

if(z == x + y){

samples.append(x)

}

}

Key idea: answer probabilistic inference questions by repeated simulation + filtering =⇒
Probabilistic Programming Language = DSL for probabilistic simulations

8 / 25

Probabilistic programming 101: manual rejection sampling
Someone: “I rolled three dice x , y , z ∈ {1, 2, 3, 4, 5, 6} and observed that x + y = z .”

What’s the probability distribution of x now? Use rejection sampling:

samples = []

for(i in 1..1000){

x = rand(DiscreteUniform (1 ,6))

y = rand(DiscreteUniform (1 ,6))

z = rand(DiscreteUniform (1 ,6))

if(z == x + y){

samples.append(x)

}

}

Key idea: answer probabilistic inference questions by repeated simulation + filtering =⇒
Probabilistic Programming Language = DSL for probabilistic simulations

8 / 25

Probabilistic programming 101: manual rejection sampling
Someone: “I rolled three dice x , y , z ∈ {1, 2, 3, 4, 5, 6} and observed that x + y = z .”

What’s the probability distribution of x now? Use rejection sampling:

samples = []

for(i in 1..1000){

x = rand(DiscreteUniform (1 ,6))

y = rand(DiscreteUniform (1 ,6))

z = rand(DiscreteUniform (1 ,6))

if(z == x + y){

samples.append(x)

}

}

Key idea: answer probabilistic inference questions by repeated simulation + filtering =⇒
Probabilistic Programming Language = DSL for probabilistic simulations

8 / 25

Probabilistic programming 101: manual rejection sampling
Someone: “I rolled three dice x , y , z ∈ {1, 2, 3, 4, 5, 6} and observed that x + y = z .”

What’s the probability distribution of x now? Use rejection sampling:

samples = []

for(i in 1..1000){

x = rand(DiscreteUniform (1 ,6))

y = rand(DiscreteUniform (1 ,6))

z = rand(DiscreteUniform (1 ,6))

if(z == x + y){

samples.append(x)

}

}

Key idea: answer probabilistic inference questions by repeated simulation + filtering =⇒
Probabilistic Programming Language = DSL for probabilistic simulations

8 / 25

Probabilistic programming 101: manual rejection sampling
Someone: “I rolled three dice x , y , z ∈ {1, 2, 3, 4, 5, 6} and observed that x + y = z .”

What’s the probability distribution of x now? Use rejection sampling:

samples = []

for(i in 1..1000){

x = rand(DiscreteUniform (1 ,6))

y = rand(DiscreteUniform (1 ,6))

z = rand(DiscreteUniform (1 ,6))

if(z == x + y){

samples.append(x)

}

}

Key idea: answer probabilistic inference questions by repeated simulation + filtering

=⇒
Probabilistic Programming Language = DSL for probabilistic simulations

8 / 25

Probabilistic programming 101: manual rejection sampling
Someone: “I rolled three dice x , y , z ∈ {1, 2, 3, 4, 5, 6} and observed that x + y = z .”

What’s the probability distribution of x now? Use rejection sampling:

samples = []

for(i in 1..1000){

x = rand(DiscreteUniform (1 ,6))

y = rand(DiscreteUniform (1 ,6))

z = rand(DiscreteUniform (1 ,6))

if(z == x + y){

samples.append(x)

}

}

Key idea: answer probabilistic inference questions by repeated simulation + filtering =⇒
Probabilistic Programming Language = DSL for probabilistic simulations

8 / 25

Probabilistic programming 101: DSL rejection sampling

Probabilistic programming language:

I Normal programming language + rand(D)

I observe(b) – filtering/conditioning

I run(func, k) – run simulation
func() k times, return array of samples

function threeDice (){

x = rand(DiscreteUniform (1 ,6))

y = rand(DiscreteUniform (1 ,6))

z = rand(DiscreteUniform (1 ,6))

observe(z == x + y)

return x

}

samples = run(threeDice , 1000)

DSL implementation:

weight = 1

function observe(b){

if(!b) weight = 0

}

function run(func , k){

samples = []

for(i in 1..k){

weight = 1

result = func()

if(weight == 1){

samples.append(result)

}

}

return samples

}

9 / 25

Probabilistic programming 101: DSL rejection sampling

Probabilistic programming language:

I Normal programming language + rand(D)

I observe(b) – filtering/conditioning

I run(func, k) – run simulation
func() k times, return array of samples

function threeDice (){

x = rand(DiscreteUniform (1 ,6))

y = rand(DiscreteUniform (1 ,6))

z = rand(DiscreteUniform (1 ,6))

observe(z == x + y)

return x

}

samples = run(threeDice , 1000)

DSL implementation:

weight = 1

function observe(b){

if(!b) weight = 0

}

function run(func , k){

samples = []

for(i in 1..k){

weight = 1

result = func()

if(weight == 1){

samples.append(result)

}

}

return samples

}

9 / 25

Probabilistic programming 101: DSL rejection sampling

Probabilistic programming language:

I Normal programming language + rand(D)

I observe(b) – filtering/conditioning

I run(func, k) – run simulation
func() k times, return array of samples

function threeDice (){

x = rand(DiscreteUniform (1 ,6))

y = rand(DiscreteUniform (1 ,6))

z = rand(DiscreteUniform (1 ,6))

observe(z == x + y)

return x

}

samples = run(threeDice , 1000)

DSL implementation:

weight = 1

function observe(b){

if(!b) weight = 0

}

function run(func , k){

samples = []

for(i in 1..k){

weight = 1

result = func()

if(weight == 1){

samples.append(result)

}

}

return samples

}

9 / 25

Probabilistic programming 101: DSL rejection sampling

Probabilistic programming language:

I Normal programming language + rand(D)

I observe(b) – filtering/conditioning

I run(func, k) – run simulation
func() k times, return array of samples

function threeDice (){

x = rand(DiscreteUniform (1 ,6))

y = rand(DiscreteUniform (1 ,6))

z = rand(DiscreteUniform (1 ,6))

observe(z == x + y)

return x

}

samples = run(threeDice , 1000)

DSL implementation:

weight = 1

function observe(b){

if(!b) weight = 0

}

function run(func , k){

samples = []

for(i in 1..k){

weight = 1

result = func()

if(weight == 1){

samples.append(result)

}

}

return samples

}

9 / 25

Probabilistic programming 101

function multiDice (){

x = rand(DiscreteUniform (1 ,6))

for(i in 1:x){

y = rand(DiscreteUniform (1 ,6))

observe(rand(DiscreteUniform (1,y)) == 3)

}

observe(rand(DiscreteUniform (1 ,6))+x == 5)

return x

}

samples = run(multiDice , 1000)

Problem: most samples get rejected =⇒ convergence is slow
Solution:
I change observe(rand(D) == x) 7→ observe(D,x)
I function observe(D,x){ weight *= probability(D,x) }
I weights are now numbers between 0..1 instead of only 0,1
I run returns an array of weighted samples

10 / 25

Probabilistic programming 101

function multiDice (){

x = rand(DiscreteUniform (1 ,6))

for(i in 1:x){

y = rand(DiscreteUniform (1 ,6))

observe(rand(DiscreteUniform (1,y)) == 3)

}

observe(rand(DiscreteUniform (1 ,6))+x == 5)

return x

}

samples = run(multiDice , 1000)

Problem: most samples get rejected =⇒ convergence is slow
Solution:
I change observe(rand(D) == x) 7→ observe(D,x)
I function observe(D,x){ weight *= probability(D,x) }
I weights are now numbers between 0..1 instead of only 0,1
I run returns an array of weighted samples

10 / 25

Probabilistic programming 101

function multiDice (){

x = rand(DiscreteUniform (1 ,6))

for(i in 1:x){

y = rand(DiscreteUniform (1 ,6))

observe(rand(DiscreteUniform (1,y)) == 3)

}

observe(rand(DiscreteUniform (1 ,6))+x == 5)

return x

}

samples = run(multiDice , 1000)

Problem: most samples get rejected =⇒ convergence is slow

Solution:
I change observe(rand(D) == x) 7→ observe(D,x)
I function observe(D,x){ weight *= probability(D,x) }
I weights are now numbers between 0..1 instead of only 0,1
I run returns an array of weighted samples

10 / 25

Probabilistic programming 101

function multiDice (){

x = rand(DiscreteUniform (1 ,6))

for(i in 1:x){

y = rand(DiscreteUniform (1 ,6))

observe(rand(DiscreteUniform (1,y)) == 3)

}

observe(rand(DiscreteUniform (1 ,6))+x == 5)

return x

}

samples = run(multiDice , 1000)

Problem: most samples get rejected =⇒ convergence is slow
Solution:
I change observe(rand(D) == x) 7→ observe(D,x)
I function observe(D,x){ weight *= probability(D,x) }
I weights are now numbers between 0..1 instead of only 0,1
I run returns an array of weighted samples

10 / 25

Probabilistic programming 101: importance sampling

function multiDice (){

x = rand(DiscreteUniform (1 ,6))

for(i in 1:x){

y = rand(DiscreteUniform (1 ,6))

observe(DiscreteUniform (1,y), 3)

}

observe(DiscreteUniform (1,6), 5-x)

return x

}

samples = run(multiDice , 1000)

Problem: most samples get rejected =⇒ convergence is slow
Solution:
I change observe(rand(D) == x) 7→ observe(D,x)
I function observe(D,x){ weight *= probability(D,x) }
I weights are now numbers between 0..1 instead of only 0,1
I run returns an array of weighted samples

11 / 25

Probabilistic programming 101: continuous distributions

Continuous distributions are problematic because probability(D,x) = 0.

When doing observe(D, x) for continuous distributions D,

I Rejection sampling rejects 100% of the trials

I Importance sampling only produces trials with weight = 0

Standard solution: use the probability density function pdf(D,x) instead.

cdf(D, x) = P[rand(D) < x]

pdf(D, x) =
d

dx
cdf(D, x)

Intuition: pdf(D, x) ∝ the probability that rand(D) is close to x.

function observe(D,x){ weight *= pdf(D,x) }

This is the source of the strange behaviour!

12 / 25

Probabilistic programming 101: continuous distributions

Continuous distributions are problematic because probability(D,x) = 0.

When doing observe(D, x) for continuous distributions D,

I Rejection sampling rejects 100% of the trials

I Importance sampling only produces trials with weight = 0

Standard solution: use the probability density function pdf(D,x) instead.

cdf(D, x) = P[rand(D) < x]

pdf(D, x) =
d

dx
cdf(D, x)

Intuition: pdf(D, x) ∝ the probability that rand(D) is close to x.

function observe(D,x){ weight *= pdf(D,x) }

This is the source of the strange behaviour!

12 / 25

Probabilistic programming 101: continuous distributions

Continuous distributions are problematic because probability(D,x) = 0.

When doing observe(D, x) for continuous distributions D,

I Rejection sampling rejects 100% of the trials

I Importance sampling only produces trials with weight = 0

Standard solution: use the probability density function pdf(D,x) instead.

cdf(D, x) = P[rand(D) < x]

pdf(D, x) =
d

dx
cdf(D, x)

Intuition: pdf(D, x) ∝ the probability that rand(D) is close to x.

function observe(D,x){ weight *= pdf(D,x) }

This is the source of the strange behaviour!

12 / 25

What went wrong: conditionals
Recall the drunk scientist:

if(flip (0.5)){

observe(Normal (1.8, 0.5), h)

}else{

observe(Normal (70, 10), w)

}

I An observe(D, x) call multiplies the weight by pdf(D, x)

I The pdf is not unitless! pdf(Normal(µ, σ), x) = 1
σ
√
2π
e−

1
2
(x−µ

σ
)2

I The weight has units m−1 in some trials and kg−1 in other trials

I Results in unit errors when computing the weighted average:

E[bmi] ≈
∑N

k=1(weightk) · (bmik)∑N
k=1(weightk)

I The sum adds m−1 + kg−1!

13 / 25

What went wrong: conditionals
Recall the drunk scientist:

if(flip (0.5)){

observe(Normal (1.8, 0.5), h)

}else{

observe(Normal (70, 10), w)

}

I An observe(D, x) call multiplies the weight by pdf(D, x)

I The pdf is not unitless! pdf(Normal(µ, σ), x) = 1
σ
√
2π
e−

1
2
(x−µ

σ
)2

I The weight has units m−1 in some trials and kg−1 in other trials

I Results in unit errors when computing the weighted average:

E[bmi] ≈
∑N

k=1(weightk) · (bmik)∑N
k=1(weightk)

I The sum adds m−1 + kg−1!
13 / 25

What went wrong: nonlinear parameter transformations
Recall the log scale scientist:

observe(Normal(1.8, 0.5), h) vs observe(LogNormal(1.8, 0.5), H)

Conditioning on events of measure zero is ambiguous!

Aε = {(x , y) ∈ R2 : |x − y | ≤ ε}
Bε = {(x , y) ∈ R2 : | exp(x)− exp(y)| ≤ ε}

“Although the sequences Aε and Bε tend to the same limit “x = y”, the conditional densities
P(x |Aε) and P(x |Bε) tend to different limits. As we see from this, merely to specify “x = y”
without any qualifications is ambiguous. Whenever we have a probability density on one
space and we wish to generate from it one on a subspace of measure zero, the only safe
procedure is to pass to an explicitly defined limit by a process like Aε and Bε. In general, the
final result will and must depend on which limiting operation was specified. This is extremely
counter-intuitive at first hearing; yet it becomes obvious when the reason for it is
understood.”
– E.T. Jaynes (paraphrased)

14 / 25

What went wrong: nonlinear parameter transformations
Recall the log scale scientist:

observe(Normal(1.8, 0.5), h) vs observe(LogNormal(1.8, 0.5), H)

Conditioning on events of measure zero is ambiguous!

Aε = {(x , y) ∈ R2 : |x − y | ≤ ε}
Bε = {(x , y) ∈ R2 : | exp(x)− exp(y)| ≤ ε}

“Although the sequences Aε and Bε tend to the same limit “x = y”, the conditional densities
P(x |Aε) and P(x |Bε) tend to different limits. As we see from this, merely to specify “x = y”
without any qualifications is ambiguous. Whenever we have a probability density on one
space and we wish to generate from it one on a subspace of measure zero, the only safe
procedure is to pass to an explicitly defined limit by a process like Aε and Bε. In general, the
final result will and must depend on which limiting operation was specified. This is extremely
counter-intuitive at first hearing; yet it becomes obvious when the reason for it is
understood.”
– E.T. Jaynes (paraphrased)

14 / 25

What went wrong: nonlinear parameter transformations
Recall the log scale scientist:

observe(Normal(1.8, 0.5), h) vs observe(LogNormal(1.8, 0.5), H)

Conditioning on events of measure zero is ambiguous!

Aε = {(x , y) ∈ R2 : |x − y | ≤ ε}
Bε = {(x , y) ∈ R2 : | exp(x)− exp(y)| ≤ ε}

“Although the sequences Aε and Bε tend to the same limit “x = y”, the conditional densities
P(x |Aε) and P(x |Bε) tend to different limits. As we see from this, merely to specify “x = y”
without any qualifications is ambiguous. Whenever we have a probability density on one
space and we wish to generate from it one on a subspace of measure zero, the only safe
procedure is to pass to an explicitly defined limit by a process like Aε and Bε. In general, the
final result will and must depend on which limiting operation was specified. This is extremely
counter-intuitive at first hearing; yet it becomes obvious when the reason for it is
understood.”
– E.T. Jaynes (paraphrased)

14 / 25

Solution: don’t condition on measure zero events
Problem: conditioning on events of measure zero is ambiguous.
Solution: condition on intervals.

observe(D, Interval(x,w))

Meaning: rand(D) is in an interval of width w around x .

Rejection sampling:

function observe(D,I){

if(abs(rand(D) - I.midpoint) > I.width /2){ weight = 0 }

}

Importance sampling:

function observe(D,I){

x = I.midpoint

w = I.width

weight *= cdf(D, x + w/2) - cdf(D, x - w/2)

}

15 / 25

Solution: don’t condition on measure zero events
Problem: conditioning on events of measure zero is ambiguous.
Solution: condition on intervals.

observe(D, Interval(x,w))

Meaning: rand(D) is in an interval of width w around x .

Rejection sampling:

function observe(D,I){

if(abs(rand(D) - I.midpoint) > I.width /2){ weight = 0 }

}

Importance sampling:

function observe(D,I){

x = I.midpoint

w = I.width

weight *= cdf(D, x + w/2) - cdf(D, x - w/2)

}

15 / 25

Solution: don’t condition on measure zero events
Problem: conditioning on events of measure zero is ambiguous.
Solution: condition on intervals.

observe(D, Interval(x,w))

Meaning: rand(D) is in an interval of width w around x .

Rejection sampling:

function observe(D,I){

if(abs(rand(D) - I.midpoint) > I.width /2){ weight = 0 }

}

Importance sampling:

function observe(D,I){

x = I.midpoint

w = I.width

weight *= cdf(D, x + w/2) - cdf(D, x - w/2)

}
15 / 25

Example of conditioning on intervals
Example:

function centimeters (){

h = rand(Normal (170, 50))

if(rand(Bernoulli (0.5))){

observe(Normal (180, 10), Interval(h, 10))

}

}

function meters (){

h = rand(Normal (1.7, 0.5))

if(rand(Bernoulli (0.5))){

observe(Normal (1.8, 0.1), Interval(h, 0.1))

}

}

Same output & no unit errors!
Rejection sampling and importance sampling converge to the same answer!

16 / 25

Example of conditioning on intervals
Example:

function centimeters (){

h = rand(Normal (170, 50))

if(rand(Bernoulli (0.5))){

observe(Normal (180, 10), Interval(h, 10))

}

}

function meters (){

h = rand(Normal (1.7, 0.5))

if(rand(Bernoulli (0.5))){

observe(Normal (1.8, 0.1), Interval(h, 0.1))

}

}

Same output & no unit errors!

Rejection sampling and importance sampling converge to the same answer!

16 / 25

Example of conditioning on intervals
Example:

function centimeters (){

h = rand(Normal (170, 50))

if(rand(Bernoulli (0.5))){

observe(Normal (180, 10), Interval(h, 10))

}

}

function meters (){

h = rand(Normal (1.7, 0.5))

if(rand(Bernoulli (0.5))){

observe(Normal (1.8, 0.1), Interval(h, 0.1))

}

}

Same output & no unit errors!
Rejection sampling and importance sampling converge to the same answer!

16 / 25

Take the limit
We still want to condition on measure zero events

Idea: parameterize the program by the width of the interval, and take the limit width→ 0

function drunk(width){

h = rand(Normal (1.7, 0.5))

w = rand(Normal (60, 10))

if(rand(Bernoulli (0.5))){

observe(Normal (1.8, 0.1), Interval(h, A*width))

}else{

observe(Normal (70, 10), Interval(w, B*width))

}

}

Since width is unitless, we must introduce
constants A and B with units m and kg .
The relative size matters even as width→ 0!

Can we compute the limit w → 0 directly?

17 / 25

Take the limit
We still want to condition on measure zero events
Idea: parameterize the program by the width of the interval, and take the limit width→ 0

function drunk(width){

h = rand(Normal (1.7, 0.5))

w = rand(Normal (60, 10))

if(rand(Bernoulli (0.5))){

observe(Normal (1.8, 0.1), Interval(h, A*width))

}else{

observe(Normal (70, 10), Interval(w, B*width))

}

}

Since width is unitless, we must introduce
constants A and B with units m and kg .
The relative size matters even as width→ 0!

Can we compute the limit w → 0 directly?

17 / 25

Take the limit
We still want to condition on measure zero events
Idea: parameterize the program by the width of the interval, and take the limit width→ 0

function drunk(width){

h = rand(Normal (1.7, 0.5))

w = rand(Normal (60, 10))

if(rand(Bernoulli (0.5))){

observe(Normal (1.8, 0.1), Interval(h, A*width))

}else{

observe(Normal (70, 10), Interval(w, B*width))

}

}

Since width is unitless, we must introduce
constants A and B with units m and kg .
The relative size matters even as width→ 0!

Can we compute the limit w → 0 directly?

17 / 25

Take the limit
We still want to condition on measure zero events
Idea: parameterize the program by the width of the interval, and take the limit width→ 0

function drunk(width){

h = rand(Normal (1.7, 0.5))

w = rand(Normal (60, 10))

if(rand(Bernoulli (0.5))){

observe(Normal (1.8, 0.1), Interval(h, A*width))

}else{

observe(Normal (70, 10), Interval(w, B*width))

}

}

Since width is unitless, we must introduce
constants A and B with units m and kg .
The relative size matters even as width→ 0!

Can we compute the limit w → 0 directly?

17 / 25

Take the limit
We still want to condition on measure zero events
Idea: parameterize the program by the width of the interval, and take the limit width→ 0

function drunk(width){

h = rand(Normal (1.7, 0.5))

w = rand(Normal (60, 10))

if(rand(Bernoulli (0.5))){

observe(Normal (1.8, 0.1), Interval(h, A*width))

}else{

observe(Normal (70, 10), Interval(w, B*width))

}

}

Since width is unitless, we must introduce
constants A and B with units m and kg .
The relative size matters even as width→ 0!

Can we compute the limit w → 0 directly?
17 / 25

Infinitesimal numbers

Definition
An infinitesimal number is a pair (r , n) ∈ R× Z, which we write as rεn.

Arithmetic with infinitesimals:

rεn ± sεk =


(r ± s)εn if n = k

rεn if n < k

±sεk if n > k

(rεn) · (sεk) = (r · s)εn+k

(rεn)/(sεk) =

{
(r/s)εn−k if s 6= 0

undefined if s = 0

18 / 25

Infinitesimal numbers

Definition
An infinitesimal number is a pair (r , n) ∈ R× Z, which we write as rεn.

Arithmetic with infinitesimals:

rεn ± sεk =


(r ± s)εn if n = k

rεn if n < k

±sεk if n > k

(rεn) · (sεk) = (r · s)εn+k

(rεn)/(sεk) =

{
(r/s)εn−k if s 6= 0

undefined if s = 0

18 / 25

Infinitesimal numbers

The probability that rand(D) lies in the interval [x − rεn, x + rεn]:

P(D, Interval(x , rεn)) =

{
cdf(D, x + 1

2 r)− cdf(D, x − 1
2 r) if n = 0

pdf(D, x) · rεn if n > 0

Infinitesimals unify cdf and pdf!

19 / 25

Infinitesimal numbers

The probability that rand(D) lies in the interval [x − rεn, x + rεn]:

P(D, Interval(x , rεn)) =

{
cdf(D, x + 1

2 r)− cdf(D, x − 1
2 r) if n = 0

pdf(D, x) · rεn if n > 0

Infinitesimals unify cdf and pdf!

19 / 25

Infinitesimal numbers

Theorem
If f (x) is given by a “probability expression” and f (ε) = rεn, then limx→0

f (x)
xn = r .

Definition
We say that f (x) is a “probability expression” in the variable x if f (x) is defined using the
operations +,−, ·, /, constants, and P(D, Interval(s, rx)) where r , s ∈ R are constants, and
D is a probability distribution with differentiable cdf.

20 / 25

Infinitesimal numbers

Theorem
If f (x) is given by a “probability expression” and f (ε) = rεn, then limx→0

f (x)
xn = r .

Definition
We say that f (x) is a “probability expression” in the variable x if f (x) is defined using the
operations +,−, ·, /, constants, and P(D, Interval(s, rx)) where r , s ∈ R are constants, and
D is a probability distribution with differentiable cdf.

20 / 25

Infinitesimal numbers
Example programs:

f u n c t i o n bmi (width){
h = rand (Normal (1 . 7 0 , 0 . 2))
w = rand (Normal (70 , 30))
i f (rand (B e r n o u l l i (0 . 5))){

ob s e r v e (Normal (2 . 0 , 0 . 1) , I n t e r v a l (h ,10∗ width))
} e l s e{

ob s e r v e (Normal (90 , 5) , I n t e r v a l (w, width))
}
r e t u r n w / hˆ2

}

f u n c t i o n mete r s (width){
h = rand (Normal (1 . 7 , 0 . 5))
i f (rand (B e r n o u l l i (0 . 5))){

ob s e r v e (Normal (2 . 0 , 0 . 1) , I n t e r v a l (h , width))
}
r e t u r n h

}

f u n c t i o n d e c i b e l s (width){
x = rand (Normal (10 , 5))
ob s e r v e (Normal (15 , 5) , I n t e r v a l (x , w idth))
r e t u r n x

}

Theorem works: we can condition on events of measure zero without paradoxes

21 / 25

Parameter transformations

The factor in front of ε allows us to do parameter transformations correctly:

A function f maps Interval(x , ε) to Interval(f (x), f ′(x)ε).

Original program:

h = rand(Normal (1.7 ,0.5))

observe(Normal (1.8 ,0.5) ,

Interval(h,eps))

return h

Answer: 1.75

Logarithmic ruler program:

H = rand(LogNormal (1.7 ,0.5))

observe(LogNormal (1.8 ,0.5) ,

Interval(H,H*eps))

return log(H)

Answer: 1.75

Same output =⇒ parameter transformation correctly applied

22 / 25

Parameter transformations

The factor in front of ε allows us to do parameter transformations correctly:

A function f maps Interval(x , ε) to Interval(f (x), f ′(x)ε).

Original program:

h = rand(Normal (1.7 ,0.5))

observe(Normal (1.8 ,0.5) ,

Interval(h,eps))

return h

Answer: 1.75

Logarithmic ruler program:

H = rand(LogNormal (1.7 ,0.5))

observe(LogNormal (1.8 ,0.5) ,

Interval(H,H*eps))

return log(H)

Answer: 1.75

Same output =⇒ parameter transformation correctly applied

22 / 25

Parameter transformations

The factor in front of ε allows us to do parameter transformations correctly:

A function f maps Interval(x , ε) to Interval(f (x), f ′(x)ε).

Original program:

h = rand(Normal (1.7 ,0.5))

observe(Normal (1.8 ,0.5) ,

Interval(h,eps))

return h

Answer: 1.75

Logarithmic ruler program:

H = rand(LogNormal (1.7 ,0.5))

observe(LogNormal (1.8 ,0.5) ,

Interval(H,H*eps))

return log(H)

Answer: 1.75

Same output =⇒ parameter transformation correctly applied

22 / 25

Parameter transformations

Language support for parameter transformations f : R→ R.

I Define f (D) for distributions by defining rand, pdf, cdf of f (D)

I Define f (I) for finite width intervals and infinitesimal width intervals

Requires that f is monotone and differentiable.
Examples: f (x) = 100x and f (x) = exp(x).

Property:

observe(f(D), f(I))

Is equivalent to:

observe(D,I)

=⇒ programs are invariant under parameter transformations

23 / 25

Parameter transformations

Language support for parameter transformations f : R→ R.

I Define f (D) for distributions by defining rand, pdf, cdf of f (D)

I Define f (I) for finite width intervals and infinitesimal width intervals

Requires that f is monotone and differentiable.
Examples: f (x) = 100x and f (x) = exp(x).

Property:

observe(f(D), f(I))

Is equivalent to:

observe(D,I)

=⇒ programs are invariant under parameter transformations

23 / 25

Recap

I Paradoxical behaviour: seemingly equivalent probabilistic programs give different outputs

I Root of the problem: conditioning on measure-zero events is ambiguous

I Solution: condition on intervals

I Restores rejection sampling as ground truth semantics

I Model measure-zero events as a limit, computed using infinitesimal arithmetic

I Semantics of observe(D, Interval(x, eps)) agrees with the old observe(D, x) in
most cases

I Programs are now invariant under parameter transformations

I Implementation in Julia

24 / 25

Comments or questions?
julesjacobs@gmail.com

Acknowledgements I thank Sriram Sankaranarayanan and the anonymous POPL reviewers for
their outstanding feedback. I’m grateful to Ike Mulder, Arjen Rouvoet, Paolo Giarrusso,
Dongho Lee, Ahmad Salim Al-Sibahi, Sam Staton, Christian Weilbach, and Robbert
Krebbers for help, inspiration, and discussions.

25 / 25

mailto:julesjacobs@gmail.com

