
Higher-Order Leak and Deadlock Free Locks

Jules Jacobs
Radboud University

Stephanie Balzer
Carnegie Mellon University

1 / 17

Memory management with substructural types

fn min(x: u32, y: u32) → u32 {
let mut v = Vec::new();
v.push(x);
v.push(y);
v.sort();
return v[0];
// v is deallocated
}

▶ Each heap allocation has a single owning reference
▶ Deallocated when owning reference disappears
▶ Prevents memory leaks...?

2 / 17

Memory leaks in Rust
Arc<Mutex<T>>

▶ Shareable mutable reference to T
▶ Guarded by a lock
▶ Reference-counted

▶ “Higher-order”: can store mutexes in mutexes

enum List { Nil, Cons(u32, Arc<Mutex<List>>) }

Memory leaks!
let x = Arc::new(Mutex::new(List::Nil)); // create list

*x.lock() = List::Cons(1, x.clone()); // create cycle

// refcount=2
drop(x);
// refcount=1 → list is leaked

3 / 17

Memory leaks in Rust
Arc<Mutex<T>>

▶ Shareable mutable reference to T
▶ Guarded by a lock
▶ Reference-counted

▶ “Higher-order”: can store mutexes in mutexes

enum List { Nil, Cons(u32, Arc<Mutex<List>>) }

Memory leaks!
let x = Arc::new(Mutex::new(List::Nil)); // create list

*x.lock() = List::Cons(1, x.clone()); // create cycle

// refcount=2
drop(x);
// refcount=1 → list is leaked

3 / 17

Deadlocks in Rust

fn swap(x : &Mutex<u32>, y : &Mutex<u32>){
let mut gx = x.lock(); // acquire locks
let mut gy = y.lock();

let tmp = *gx; // swap contents
*gx = *gy;
*gy = tmp;

drop(gx); // release locks
drop(gy);
}

Deadlocks!
spawn(||{ swap(x,y) });
spawn(||{ swap(y,x) });

4 / 17

The paper in a nutshell

Can we get leak and deadlock freedom by type checking?

Language λlock with a linearly typed lock API
▶ Any lock in scope can be safely acquired
▶ “Higher-order locks”: can store locks in locks (recursively)
▶ Sharing topology remains acyclic by typing
▶ No leaks/deadlocks (✓ in Coq)

Extension λlock++ with cyclic sharing topology
▶ Lock groups with local lock orders
▶ Locks across groups can still be acquired in arbitrary order
▶ No leaks/deadlocks (✓ in Coq)

5 / 17

The paper in a nutshell

Can we get leak and deadlock freedom by type checking?

Language λlock with a linearly typed lock API
▶ Any lock in scope can be safely acquired
▶ “Higher-order locks”: can store locks in locks (recursively)
▶ Sharing topology remains acyclic by typing
▶ No leaks/deadlocks (✓ in Coq)

Extension λlock++ with cyclic sharing topology
▶ Lock groups with local lock orders
▶ Locks across groups can still be acquired in arbitrary order
▶ No leaks/deadlocks (✓ in Coq)

5 / 17

The paper in a nutshell

Can we get leak and deadlock freedom by type checking?

Language λlock with a linearly typed lock API
▶ Any lock in scope can be safely acquired
▶ “Higher-order locks”: can store locks in locks (recursively)
▶ Sharing topology remains acyclic by typing
▶ No leaks/deadlocks (✓ in Coq)

Extension λlock++ with cyclic sharing topology
▶ Lock groups with local lock orders
▶ Locks across groups can still be acquired in arbitrary order
▶ No leaks/deadlocks (✓ in Coq)

5 / 17

λlock’s lock type

Lock⟨τ a
b⟩

a∈ {0,1}
b∈ {0,1}

A shareable reference to τ, similar to Arc<Mutex<t>> in Rust

▶ But ℓ : ⟨τ a
b⟩ is linear

▶ a = 1: this reference has to deallocate the lock
▶ b = 1: this reference has to release the lock

6 / 17

λlock’s lock type

Lock

⟨τ a
b⟩

a∈ {0,1}
b∈ {0,1}

A shareable reference to τ, similar to Arc<Mutex<t>> in Rust

▶ But ℓ : ⟨τ a
b⟩ is linear

▶ a = 1: this reference has to deallocate the lock
▶ b = 1: this reference has to release the lock

6 / 17

λlock’s lock type

Lock

⟨τ a
b⟩

a∈ {0,1}
b∈ {0,1}

A shareable reference to τ, similar to Arc<Mutex<t>> in Rust

▶ But ℓ : ⟨τ a
b⟩ is linear

▶ a = 1: this reference has to deallocate the lock
▶ b = 1: this reference has to release the lock

6 / 17

λlock’s lock API

T1

refs: 1
val:

⟨τ 1
1⟩

T2⟨τ 0
0⟩

T3⟨τ 0
0⟩

v

new : 1 −◦ ⟨τ 1
1⟩ (initially empty)

fork : ⟨τ a1+a2
b1+b2

⟩ × (⟨τ a2
b2
⟩ −◦ 1) −◦ ⟨τ a1

b1
⟩

release : ⟨τ a
1⟩ × τ −◦ ⟨τ a

0⟩
acquire : ⟨τ a

0⟩ −◦ ⟨τ a
1⟩ × τ

drop : ⟨τ 0
0⟩ −◦ 1 (decrements refcount)

wait : ⟨τ 1
0⟩ −◦ τ (blocks until refcount = 1)

7 / 17

λlock’s lock API

T1
refs: 1
val:

⟨τ 1
1⟩

T2⟨τ 0
0⟩

T3⟨τ 0
0⟩

v

new : 1 −◦ ⟨τ 1
1⟩ (initially empty)

fork : ⟨τ a1+a2
b1+b2

⟩ × (⟨τ a2
b2
⟩ −◦ 1) −◦ ⟨τ a1

b1
⟩

release : ⟨τ a
1⟩ × τ −◦ ⟨τ a

0⟩
acquire : ⟨τ a

0⟩ −◦ ⟨τ a
1⟩ × τ

drop : ⟨τ 0
0⟩ −◦ 1 (decrements refcount)

wait : ⟨τ 1
0⟩ −◦ τ (blocks until refcount = 1)

7 / 17

λlock’s lock API

T1
refs: 1
val:

⟨τ 1
1⟩

T2⟨τ 0
0⟩

T3⟨τ 0
0⟩

v

new : 1 −◦ ⟨τ 1
1⟩ (initially empty)

fork : ⟨τ a1+a2
b1+b2

⟩ × (⟨τ a2
b2
⟩ −◦ 1) −◦ ⟨τ a1

b1
⟩

release : ⟨τ a
1⟩ × τ −◦ ⟨τ a

0⟩
acquire : ⟨τ a

0⟩ −◦ ⟨τ a
1⟩ × τ

drop : ⟨τ 0
0⟩ −◦ 1 (decrements refcount)

wait : ⟨τ 1
0⟩ −◦ τ (blocks until refcount = 1)

7 / 17

λlock’s lock API

T1
refs: 1
val:

⟨τ 1
1⟩

T2⟨τ 0
0⟩

T3⟨τ 0
0⟩

v

new : 1 −◦ ⟨τ 1
1⟩ (initially empty)

fork : ⟨τ a1+a2
b1+b2

⟩ × (⟨τ a2
b2
⟩︸ ︷︷ ︸

to child thread

−◦ 1) −◦ ⟨τ a1
b1
⟩︸ ︷︷ ︸

to parent thread

release : ⟨τ a
1⟩ × τ −◦ ⟨τ a

0⟩
acquire : ⟨τ a

0⟩ −◦ ⟨τ a
1⟩ × τ

drop : ⟨τ 0
0⟩ −◦ 1 (decrements refcount)

wait : ⟨τ 1
0⟩ −◦ τ (blocks until refcount = 1)

7 / 17

λlock’s lock API

T1
refs: 2
val:

⟨τ 1
1⟩

T2⟨τ 0
0⟩

T3⟨τ 0
0⟩

v

new : 1 −◦ ⟨τ 1
1⟩ (initially empty)

fork : ⟨τ a1+a2
b1+b2

⟩ × (⟨τ a2
b2
⟩︸ ︷︷ ︸

to child thread

−◦ 1) −◦ ⟨τ a1
b1
⟩︸ ︷︷ ︸

to parent thread

release : ⟨τ a
1⟩ × τ −◦ ⟨τ a

0⟩
acquire : ⟨τ a

0⟩ −◦ ⟨τ a
1⟩ × τ

drop : ⟨τ 0
0⟩ −◦ 1 (decrements refcount)

wait : ⟨τ 1
0⟩ −◦ τ (blocks until refcount = 1)

7 / 17

λlock’s lock API

T1
refs: 3
val:

⟨τ 1
1⟩

T2⟨τ 0
0⟩

T3⟨τ 0
0⟩

v

new : 1 −◦ ⟨τ 1
1⟩ (initially empty)

fork : ⟨τ a1+a2
b1+b2

⟩ × (⟨τ a2
b2
⟩︸ ︷︷ ︸

to child thread

−◦ 1) −◦ ⟨τ a1
b1
⟩︸ ︷︷ ︸

to parent thread

release : ⟨τ a
1⟩ × τ −◦ ⟨τ a

0⟩
acquire : ⟨τ a

0⟩ −◦ ⟨τ a
1⟩ × τ

drop : ⟨τ 0
0⟩ −◦ 1 (decrements refcount)

wait : ⟨τ 1
0⟩ −◦ τ (blocks until refcount = 1)

7 / 17

λlock’s lock API

T1
refs: 3
val:

⟨τ 1
1⟩

T2⟨τ 0
0⟩

T3⟨τ 0
0⟩

v

new : 1 −◦ ⟨τ 1
1⟩ (initially empty)

fork : ⟨τ a1+a2
b1+b2

⟩ × (⟨τ a2
b2
⟩︸ ︷︷ ︸

to child thread

−◦ 1) −◦ ⟨τ a1
b1
⟩︸ ︷︷ ︸

to parent thread

release : ⟨τ a
1⟩ × τ −◦ ⟨τ a

0⟩
acquire : ⟨τ a

0⟩ −◦ ⟨τ a
1⟩ × τ

drop : ⟨τ 0
0⟩ −◦ 1 (decrements refcount)

wait : ⟨τ 1
0⟩ −◦ τ (blocks until refcount = 1)

7 / 17

λlock’s lock API

T1
refs: 3
val:

⟨τ 1
1⟩

v

T2⟨τ 0
0⟩

T3⟨τ 0
0⟩

v

new : 1 −◦ ⟨τ 1
1⟩ (initially empty)

fork : ⟨τ a1+a2
b1+b2

⟩ × (⟨τ a2
b2
⟩︸ ︷︷ ︸

to child thread

−◦ 1) −◦ ⟨τ a1
b1
⟩︸ ︷︷ ︸

to parent thread

release : ⟨τ a
1⟩ × τ −◦ ⟨τ a

0⟩
acquire : ⟨τ a

0⟩ −◦ ⟨τ a
1⟩ × τ

drop : ⟨τ 0
0⟩ −◦ 1 (decrements refcount)

wait : ⟨τ 1
0⟩ −◦ τ (blocks until refcount = 1)

7 / 17

λlock’s lock API

T1
refs: 3
val: v

⟨τ 1
0⟩

T2⟨τ 0
0⟩

T3⟨τ 0
0⟩

v

new : 1 −◦ ⟨τ 1
1⟩ (initially empty)

fork : ⟨τ a1+a2
b1+b2

⟩ × (⟨τ a2
b2
⟩︸ ︷︷ ︸

to child thread

−◦ 1) −◦ ⟨τ a1
b1
⟩︸ ︷︷ ︸

to parent thread

release : ⟨τ a
1⟩ × τ −◦ ⟨τ a

0⟩
acquire : ⟨τ a

0⟩ −◦ ⟨τ a
1⟩ × τ

drop : ⟨τ 0
0⟩ −◦ 1 (decrements refcount)

wait : ⟨τ 1
0⟩ −◦ τ (blocks until refcount = 1)

7 / 17

λlock’s lock API

T1
refs: 3
val:

⟨τ 1
0⟩

T2⟨τ 0
1⟩

v

T3⟨τ 0
0⟩

v

new : 1 −◦ ⟨τ 1
1⟩ (initially empty)

fork : ⟨τ a1+a2
b1+b2

⟩ × (⟨τ a2
b2
⟩︸ ︷︷ ︸

to child thread

−◦ 1) −◦ ⟨τ a1
b1
⟩︸ ︷︷ ︸

to parent thread

release : ⟨τ a
1⟩ × τ −◦ ⟨τ a

0⟩
acquire : ⟨τ a

0⟩ −◦ ⟨τ a
1⟩ × τ

drop : ⟨τ 0
0⟩ −◦ 1 (decrements refcount)

wait : ⟨τ 1
0⟩ −◦ τ (blocks until refcount = 1)

7 / 17

λlock’s lock API

T1
refs: 3
val: v

⟨τ 1
0⟩

T2⟨τ 0
0⟩

T3⟨τ 0
0⟩

v

new : 1 −◦ ⟨τ 1
1⟩ (initially empty)

fork : ⟨τ a1+a2
b1+b2

⟩ × (⟨τ a2
b2
⟩︸ ︷︷ ︸

to child thread

−◦ 1) −◦ ⟨τ a1
b1
⟩︸ ︷︷ ︸

to parent thread

release : ⟨τ a
1⟩ × τ −◦ ⟨τ a

0⟩
acquire : ⟨τ a

0⟩ −◦ ⟨τ a
1⟩ × τ

drop : ⟨τ 0
0⟩ −◦ 1 (decrements refcount)

wait : ⟨τ 1
0⟩ −◦ τ (blocks until refcount = 1)

7 / 17

λlock’s lock API

T1
refs: 3
val: v

⟨τ 1
0⟩

T2⟨τ 0
0⟩

T3⟨τ 0
0⟩

v

new : 1 −◦ ⟨τ 1
1⟩ (initially empty)

fork : ⟨τ a1+a2
b1+b2

⟩ × (⟨τ a2
b2
⟩︸ ︷︷ ︸

to child thread

−◦ 1) −◦ ⟨τ a1
b1
⟩︸ ︷︷ ︸

to parent thread

release : ⟨τ a
1⟩ × τ −◦ ⟨τ a

0⟩
acquire : ⟨τ a

0⟩ −◦ ⟨τ a
1⟩ × τ

drop : ⟨τ 0
0⟩ −◦ 1 (decrements refcount)

wait : ⟨τ 1
0⟩ −◦ τ (blocks until refcount = 1)

7 / 17

λlock’s lock API

T1
refs: 2
val: v

⟨τ 1
0⟩

T2⟨τ 0
0⟩

T3⟨τ 0
0⟩

v

new : 1 −◦ ⟨τ 1
1⟩ (initially empty)

fork : ⟨τ a1+a2
b1+b2

⟩ × (⟨τ a2
b2
⟩︸ ︷︷ ︸

to child thread

−◦ 1) −◦ ⟨τ a1
b1
⟩︸ ︷︷ ︸

to parent thread

release : ⟨τ a
1⟩ × τ −◦ ⟨τ a

0⟩
acquire : ⟨τ a

0⟩ −◦ ⟨τ a
1⟩ × τ

drop : ⟨τ 0
0⟩ −◦ 1 (decrements refcount)

wait : ⟨τ 1
0⟩ −◦ τ (blocks until refcount = 1)

7 / 17

λlock’s lock API

T1
refs: 1
val: v

⟨τ 1
0⟩

T2⟨τ 0
0⟩

T3⟨τ 0
0⟩

v

new : 1 −◦ ⟨τ 1
1⟩ (initially empty)

fork : ⟨τ a1+a2
b1+b2

⟩ × (⟨τ a2
b2
⟩︸ ︷︷ ︸

to child thread

−◦ 1) −◦ ⟨τ a1
b1
⟩︸ ︷︷ ︸

to parent thread

release : ⟨τ a
1⟩ × τ −◦ ⟨τ a

0⟩
acquire : ⟨τ a

0⟩ −◦ ⟨τ a
1⟩ × τ

drop : ⟨τ 0
0⟩ −◦ 1 (decrements refcount)

wait : ⟨τ 1
0⟩ −◦ τ (blocks until refcount = 1)

7 / 17

λlock’s lock API

T1

refs:
val:

⟨τ 1
0⟩

T2⟨τ 0
0⟩

T3⟨τ 0
0⟩

v

new : 1 −◦ ⟨τ 1
1⟩ (initially empty)

fork : ⟨τ a1+a2
b1+b2

⟩ × (⟨τ a2
b2
⟩︸ ︷︷ ︸

to child thread

−◦ 1) −◦ ⟨τ a1
b1
⟩︸ ︷︷ ︸

to parent thread

release : ⟨τ a
1⟩ × τ −◦ ⟨τ a

0⟩
acquire : ⟨τ a

0⟩ −◦ ⟨τ a
1⟩ × τ

drop : ⟨τ 0
0⟩ −◦ 1 (decrements refcount)

wait : ⟨τ 1
0⟩ −◦ τ (blocks until refcount = 1)

7 / 17

Which concurrency patterns does λlock support?

Simultaneously acquire multiple locks:

let swap = λ(ℓ1 : ⟨τ 0
0⟩, ℓ2 : ⟨τ 0

0⟩).
let (ℓ1 : ⟨τ 0

1⟩, x1 : τ) = acquire(ℓ1) in
let (ℓ2 : ⟨τ 0

1⟩, x2 : τ) = acquire(ℓ2) in
let ℓ1 : ⟨τ 0

0⟩ = release(ℓ1, x2) in
let ℓ2 : ⟨τ 0

0⟩ = release(ℓ2, x1) in
(ℓ1, ℓ2)

✓
deadlock free

Futures / promises / fork-join:

let ℓ : ⟨τ 1
0⟩ = fork(new() : ⟨τ 1

1⟩, λℓ : ⟨τ
0
1⟩.

drop(release(ℓ,E : τ))

) in · · ·wait(ℓ) · · ·

Obligation to fulfill promise cannot be discarded

8 / 17

Which concurrency patterns does λlock support?

Simultaneously acquire multiple locks:

let swap = λ(ℓ1 : ⟨τ 0
0⟩, ℓ2 : ⟨τ 0

0⟩).
let (ℓ1 : ⟨τ 0

1⟩, x1 : τ) = acquire(ℓ1) in
let (ℓ2 : ⟨τ 0

1⟩, x2 : τ) = acquire(ℓ2) in
let ℓ1 : ⟨τ 0

0⟩ = release(ℓ1, x2) in
let ℓ2 : ⟨τ 0

0⟩ = release(ℓ2, x1) in
(ℓ1, ℓ2)

✓
deadlock free

Futures / promises / fork-join:

let ℓ : ⟨τ 1
0⟩ = fork(new() : ⟨τ 1

1⟩, λℓ : ⟨τ
0
1⟩.

drop(release(ℓ,E : τ))

) in · · ·wait(ℓ) · · ·

Obligation to fulfill promise cannot be discarded

8 / 17

Locks in locks in λlock

Store locks in locks:

release(ℓ1 : ⟨⟨τ a
b⟩

0
1⟩, ℓ2 : ⟨τ a

b⟩)
✓

leak free

Another thread can acquire(ℓ1) to obtain ℓ2

Recursive mutable data structures:

tree = ⟨1 + τ× tree × tree 1
0⟩

Session typed channels as a library:

s ::= !τ.s | ?τ.s | s& s | s⊕ s | End! | End? | µx.s | x

Shared sessions:

⟨µx.!τ.?τ.s⊕End!
0
0⟩

9 / 17

Locks in locks in λlock

Store locks in locks:

release(ℓ1 : ⟨⟨τ a
b⟩

0
1⟩, ℓ2 : ⟨τ a

b⟩)
✓

leak free

Another thread can acquire(ℓ1) to obtain ℓ2

Recursive mutable data structures:

tree = ⟨1 + τ× tree × tree 1
0⟩

Session typed channels as a library:

s ::= !τ.s | ?τ.s | s& s | s⊕ s | End! | End? | µx.s | x

Shared sessions:

⟨µx.!τ.?τ.s⊕End!
0
0⟩

9 / 17

Locks in locks in λlock

Store locks in locks:

release(ℓ1 : ⟨⟨τ a
b⟩

0
1⟩, ℓ2 : ⟨τ a

b⟩)
✓

leak free

Another thread can acquire(ℓ1) to obtain ℓ2

Recursive mutable data structures:

tree = ⟨1 + τ× tree × tree 1
0⟩

Session typed channels as a library:

s ::= !τ.s | ?τ.s | s& s | s⊕ s | End! | End? | µx.s | x

Shared sessions:

⟨µx.!τ.?τ.s⊕End!
0
0⟩

9 / 17

Locks in locks in λlock

Store locks in locks:

release(ℓ1 : ⟨⟨τ a
b⟩

0
1⟩, ℓ2 : ⟨τ a

b⟩)
✓

leak free

Another thread can acquire(ℓ1) to obtain ℓ2

Recursive mutable data structures:

tree = ⟨1 + τ× tree × tree 1
0⟩

Session typed channels as a library:

s ::= !τ.s | ?τ.s | s& s | s⊕ s | End! | End? | µx.s | x

Shared sessions:

⟨µx.!τ.?τ.s⊕End!
0
0⟩

9 / 17

From λlock to λlock++

In λlock, we can duplicate one lock on fork.
Is it sound to allow duplicating two?

let (ℓ1, ℓ2) = fork((ℓ1, ℓ2), λ(ℓ1, ℓ2). · · ·) in · · ·

No, because
▶ Deadlock: acquiring (ℓ1 then ℓ2) in parallel with (ℓ2 then ℓ1)
▶ Leak: storing (ℓ1 into ℓ2) in parallel with (ℓ2 into ℓ1)

Yes, if
▶ We make acquire and wait follow a lock order
▶ We prevent storing those locks inside each other

10 / 17

From λlock to λlock++

In λlock, we can duplicate one lock on fork.
Is it sound to allow duplicating two?

let (ℓ1, ℓ2) = fork((ℓ1, ℓ2), λ(ℓ1, ℓ2). · · ·) in · · ·

No, because
▶ Deadlock: acquiring (ℓ1 then ℓ2) in parallel with (ℓ2 then ℓ1)
▶ Leak: storing (ℓ1 into ℓ2) in parallel with (ℓ2 into ℓ1)

Yes, if
▶ We make acquire and wait follow a lock order
▶ We prevent storing those locks inside each other

10 / 17

From λlock to λlock++

In λlock, we can duplicate one lock on fork.
Is it sound to allow duplicating two?

let (ℓ1, ℓ2) = fork((ℓ1, ℓ2), λ(ℓ1, ℓ2). · · ·) in · · ·

No, because
▶ Deadlock: acquiring (ℓ1 then ℓ2) in parallel with (ℓ2 then ℓ1)
▶ Leak: storing (ℓ1 into ℓ2) in parallel with (ℓ2 into ℓ1)

Yes, if
▶ We make acquire and wait follow a lock order
▶ We prevent storing those locks inside each other

10 / 17

λlock++’s lock group type

⟨τ1
a1
b1
, ..., τn

an
bn
⟩

▶ We can only acquire and wait in the given order
▶ We can add and remove locks dynamically
▶ The type level list is a local view into a complete order.

11 / 17

λlock++’s lock group API

newgroup : 1 −◦ ⟨⟩
dropgroup : ⟨⟩ −◦ 1

new[k] : ⟨A,B⟩ −◦ ⟨A, τ1
1, B⟩ (length(A) = k)

drop[k] : ⟨A, τ0
0, B⟩ −◦ ⟨A,B⟩

release[k] : ⟨A, τa
1, B⟩ × τ −◦ ⟨A, τa

0,B⟩

acquire[k] : ⟨A, τa
0, B0⟩ −◦ ⟨A, τa

1,B0⟩ × τ

wait[k] : ⟨A0, τ
1
0,B1

0⟩ −◦ ⟨A0,B1
0⟩ × τ

fork : ⟨A⟩ × (⟨B⟩ −◦ 1) −◦ ⟨C⟩
(where A = B ⊕ C)

12 / 17

Swap within a lock group

swap : ⟨int00, int00⟩ −◦ ⟨int00, int00⟩
swap(ℓ) :=

let ℓ, x = acquire[0](ℓ) in
let ℓ, y = acquire[1](ℓ) in
let ℓ = release[0](ℓ, y) in
let ℓ = release[1](ℓ, x) in ℓ

▶ Type system enforces an order within a group
▶ No restrictions between two groups

(Partial lock orders don’t allow this!)
13 / 17

Dĳkstra’s dining philosophers

Lock groups allow λlock++ to have cyclic connectivity

▶ Example: Dĳkstra’s Dining Philosophers
▶ Every thread (Philosopher)

has access to 2 locks (forks): ⟨forka
b, forka ′

b ′⟩
▶ Can grow the dining table dynamically

(fractally growing example in the paper)

P f P

fPf
→

P f P

f

PfP

f →

P f P

f

PfP

f P

14 / 17

Leak and deadlock freedom theorem
Small-step semantics on config ρ = {X1, ..,Xn} of threads & locks

X ∈ ρ waits for Y ∈ ρ if
▶ X is a thread attempting an operation on lock Y , or
▶ Y has a reference to lock X

X ∈ ρ is reachable if it transitively waits for Y ∈ ρ that can step

S ⊆ ρ is a deadlock if no X ∈ S can step or waits for Y ∉ S

Theorem: all X ∈ ρ reachable ⇐⇒ no deadlocks ∅ ⊂ S ⊆ ρ

Theorem: well-typed programs are leak and deadlock free
Corollary: global progress: ρ ≠ ∅ → ρ steps

✓ in Coq (≈ 13k loc)

Insight: leak and deadlock freedom are related

15 / 17

Leak and deadlock freedom theorem
Small-step semantics on config ρ = {X1, ..,Xn} of threads & locks

X ∈ ρ waits for Y ∈ ρ if
▶ X is a thread attempting an operation on lock Y , or
▶ Y has a reference to lock X

X ∈ ρ is reachable if it transitively waits for Y ∈ ρ that can step

S ⊆ ρ is a deadlock if no X ∈ S can step or waits for Y ∉ S

Theorem: all X ∈ ρ reachable ⇐⇒ no deadlocks ∅ ⊂ S ⊆ ρ

Theorem: well-typed programs are leak and deadlock free
Corollary: global progress: ρ ≠ ∅ → ρ steps

✓ in Coq (≈ 13k loc)

Insight: leak and deadlock freedom are related

15 / 17

Leak and deadlock freedom theorem
Small-step semantics on config ρ = {X1, ..,Xn} of threads & locks

X ∈ ρ waits for Y ∈ ρ if
▶ X is a thread attempting an operation on lock Y , or
▶ Y has a reference to lock X

X ∈ ρ is reachable if it transitively waits for Y ∈ ρ that can step

S ⊆ ρ is a deadlock if no X ∈ S can step or waits for Y ∉ S

Theorem: all X ∈ ρ reachable ⇐⇒ no deadlocks ∅ ⊂ S ⊆ ρ

Theorem: well-typed programs are leak and deadlock free
Corollary: global progress: ρ ≠ ∅ → ρ steps

✓ in Coq (≈ 13k loc)

Insight: leak and deadlock freedom are related
15 / 17

Related and future work (non-exhaustive)

Related work
▶ CLASS – Rocha and Caires (ICFP’21, ESOP’23)
▶ Client-server sessions – Qian, Kavvos, Birkedal (ICFP’21)
▶ Usages/obligations – Kobayashi et al. (see paper)
▶ Priorities – Padovani, Dharda et al. (see paper)
▶ Manifest sharing – Balzer et al. (ICFP’17,ESOP’19)
▶ Session types – (see paper)

Future work
▶ DAG-shaped mutable data structures / Rc<RefCell<T>>
▶ Integration with Rust features (borrowing & unsafe)

16 / 17

Rust is a practical memory-safe language without GC ✓

Can a practical language be leak and deadlock free?

I hope to have convinced you that:

▶ This might be possible & is worth trying
▶ Promising direction: single ownership → sharing topology

“The authors didn’t even have to hide a bunch of more
complicated rules in an appendix.” – Reviewer A

(P.S. I’m looking for a postdoc position)

17 / 17

Rust is a practical memory-safe language without GC ✓

Can a practical language be leak and deadlock free?

I hope to have convinced you that:

▶ This might be possible & is worth trying
▶ Promising direction: single ownership → sharing topology

“The authors didn’t even have to hide a bunch of more
complicated rules in an appendix.” – Reviewer A

(P.S. I’m looking for a postdoc position)

17 / 17

