Higher-Order Leak and Deadlock Free Locks

Jules Jacobs Stephanie Balzer
Radboud University Carnegie Mellon University

1/17

Memory management with substructural types

fn min(x: u32, y: u32) — u32 {
let mut v = Vec::new(Q);
v.push(x);
v.push(y);
v.sort(Q);
return v[0];
// v is deallocated

» Each heap allocation has a single owning reference
» Deallocated when owning reference disappears
> Prevents memory leaks...?

2/17

Memory leaks in Rust

Arc<Mutex<T>>

» Shareable mutable reference to T

» Guarded by a lock
» Reference-counted

» “Higher-order”: can store mutexes in mutexes

enum List { Nil, Cons(u32, Arc<Mutex<List>>) }

3/17

Memory leaks in Rust

Arc<Mutex<T>>

» Shareable mutable reference to T

> Guarded by a lock
» Reference-counted

» “Higher-order”: can store mutexes in mutexes
enum List { Nil, Cons(u32, Arc<Mutex<List>>) }
Memory leaks!

let x = Arc::new(Mutex::new(List::Nil)); // create list
*x.lock() = List::Cons(l, x.clone()); // create cycle
// refcount=2

drop(x);
// refcount=1 — list is leaked

3/17

Deadlocks in Rust

fn swap(x : &Mutex<u32>, y : &Mutex<u32>){
let mut gx = x.lock(); // acquire locks
let mut gy = y.lock(Q;

let tmp = *gx; // swap contents
¥gxX = *gy;

*gy = tmp;

drop(gx); // release locks
drop(gy);
}

Deadlocks!

spawn(| |{ swap(x,y) 1);
spawn(| |{ swap(y,x) }1);

4/17

The paper in a nutshell

[Can we get leak and deadlock freedom by type checking?]

5/17

The paper in a nutshell

[Can we get leak and deadlock freedom by type checking?]

Language Ao With a linearly typed lock API
» Any lock in scope can be safely acquired
» “Higher-order locks”: can store locks in locks (recursively)
» Sharing topology remains acyclic by typing
» No leaks/deadlocks (v in Coq)

5/17

The paper in a nutshell

[Can we get leak and deadlock freedom by type checking?]

Language Ao With a linearly typed lock API
» Any lock in scope can be safely acquired
» “Higher-order locks”: can store locks in locks (recursively)
» Sharing topology remains acyclic by typing
» No leaks/deadlocks (v in Coq)

Extension Ay With cyclic sharing topology
» Lock groups with local lock orders
» Locks across groups can still be acquired in arbitrary order
» No leaks/deadlocks (v in Coq)

5/17

Alock’s lock type

ac{0,1}
Lock(t}) be (04

A shareable reference to T, similar to Arc<Mutex<t>> in Rust

6/17

Alock’s lock type

ac{0,1}
(Th) be{0.1)

A shareable reference to T, similar to Arc<Mutex<t>> in Rust

6/17

Alock’s lock type

ac{0,1}
(Th) be{0.1)

A shareable reference to T, similar to Arc<Mutex<t>> in Rust

> But (: (12) is linear
» a = 1: this reference has to deallocate the lock
» b = 1: this reference has to release the lock

6/17

Alock 'S lock API

D,

new: 1o (t]) (initially empty)

7/17

Alock 'S lock API

’
G <T1> refs: 1
val:

new: 1o (t]) (initially empty)

7/17

Alock 'S lock API
’
<T1> refs: 1
G val:

new: 1o (t}) (initially empty)
fork : <ﬂri‘:[22> (T 2) —1) —o <Tzl>

7/17

Alock 'S lock API

new: 1—o(t}) (1n1t1a11y empty)
fork : (Tz1122> (T}) —~1)— <T§1>
\,_/

——
to child thread to parent thread

7/17

Alock 'S lock API

(tg)
’
G <T1> refs: 2
val:

new: 1—o (1) (1n1t1a11y empty)

1

Ty

fork: (tj'}22) x ((tf2) —o 1) —o (t]!)
\,_/

——
to child thread to parent thread

7/17

Alock 'S lock API

new: 1—o(t}) (1n1t1a11y empty)
fork : <Tz1122> (T}) —~1)— <Tz1>
\,_/

——
to child thread to parent thread

7/17

Alock 'S lock API

’
G <T1> refs: 3
val:
(td)
1

new: 1-—o (ty) (initially empty)

+
fork: (t71772) x ((tg2) — 1) —o (1))
——
to child thread to parent thread

release: (t§)xt — (1))

acquire : (t) —o (t9) x~

7/17

Alock 'S lock API

new: 1—o(tl) (initially empty)
fork : (Tg!152) x ((t52) —o 1) —o (t})

——
to child thread to parent thread

release: (t§)xt — (1))
acquire : (td) —o (t9) x~

7/17

Alock 'S lock API

(tg)
’
0 <T0> refs: 3
val:
(td)

new: 1o (tl) (initially empty)

+
fork: (t71772) x ((tg2) — 1) —o (1))
——
to child thread to parent thread

release: (t§)xt — (1))

acquire : (t) —o (t9) x~

7/17

Alock 'S lock API

new: 1o (tl) (initially empty)

+
fork: (t71772) x ((tg2) — 1) —o (1))
——
to child thread to parent thread

release: (t§)xt — (1))

acquire : (t) —o (t9) x~

7/17

Alock 'S lock API

(tg)
’
0 <T0> refs: 3
val:
(td)

new: 1o (tl) (initially empty)

+
fork: (t71772) x ((tg2) — 1) —o (1))
——
to child thread to parent thread

release: (t§)xt — (1))

acquire : (t) —o (t9) x~

7/17

Alock 'S lock API

(tg)
G <T(1)> refs: 3
val:

(td)

new: 1o (tl) (initially empty)

fork : (Tg!i52) x ((t52) —o 1) —o (t})

——

to child thread to parent thread
release: (t§)xt — (1))
acquire : (t) —o (t9) x~

drop: (t9) —1 (decrements refcount)

wait: (1)) —orT (blocks until refcount = 1)

7/17

Alock 'S lock API

’
G <T0> refs: 2
val:

(td)

new: 1o (tl) (initially empty)

fork : (Tg!i52) x ((t52) —o 1) —o (t})

——

to child thread to parent thread
release: (t§)xt — (1))
acquire : (t) —o (t9) x~

drop: (t9) —1 (decrements refcount)

wait: (1)) —orT (blocks until refcount = 1)

7/17

Alock 'S lock API

new :
fork :

release :
acquire :

drop :
wait :

1—o(tl) (initially empty)

(82 (182) —0 1) —o (v2)

——
to child thread to parent thread

(1) xt —o (td)

(td) — (tPxt

(Td) —1 (decrements refcount)

(td) —o 7 (blocks until refcount = 1)

7/17

Alock 'S lock API

@

new :
fork :

release :
acquire :

drop :
wait :

1—o(tl) (initially empty)

(82 (182) —0 1) —o (v2)

——
to child thread to parent thread

(1) xt —o (td)

(td) — (tPxt

(Td) —1 (decrements refcount)

(td) —o 7 (blocks until refcount = 1)

7/17

Which concurrency patterns does Ay, support?
Simultaneously acquire multiple locks:

let swap = A({y: (19), 8o : (TH)).

let (¢4 : (t9), x4 : 1) = acquire(¢y) in \/

let (¢ : (19),x2: T) = acquire(fy) in

let ¢y : (1)) = release(y,xo) in deadlock free
let ¢, : (1)) = release({s, x1) in

(€4, €)

8/17

Which concurrency patterns does Ay, support?
Simultaneously acquire multiple locks:

let swap = A({y: (19), 8o : (TH)).

let (¢4 : (t9), x4 : 1) = acquire(¢y) in \/

let (¢ : (19),x2: T) = acquire(fy) in

let ¢y : (1)) = release(y,xo) in deadlock free
let ¢, : (1)) = release({s, x1) in

(€4, €)

Futures / promises / fork-join:
let¢: (t}) = fork(new(): (t1),AL: (t9).
drop(release(¢{, E : 1))
Jin ---wait({) - -

Obligation to fulfill promise cannot be discarded

8/17

Locks in locks in Ajgqx

Store locks in locks: \/

release(ls: ((13)9), 4o (1)) leak free

Another thread can acquire(¢,) to obtain {,

9/17

Locks in locks in Ajgqx

Store locks in locks: \/

release(ls: ((13)9), 4o (1)) leak free

Another thread can acquire(¢,) to obtain {,
Recursive mutable data structures:

tree = (1 4+ x tree x tree)

9/17

Locks in locks in Ajgqx

Store locks in locks: \/

release(ls: ((13)9), 4o (1)) leak free

Another thread can acquire(¢,) to obtain {,
Recursive mutable data structures:
tree = (1 4+ x tree x tree)
Session typed channels as a library:

s:=lts|?ts|s&s|s®s|End | End; | ux.s | x

9/17

Locks in locks in Ajgqx

Store locks in locks: \/

release(ls: ((13)9), 4o (1)) leak free

Another thread can acquire(¢,) to obtain {,
Recursive mutable data structures:
tree = (1 4+ x tree x tree)
Session typed channels as a library:
s:=lts|?ts|s&s|s®s|End | End; | ux.s | x
Shared sessions:

(ux.!t.2t.s D Endy)

9/17

From Ajei t0 Aokt

In Aok, we can duplicate one lock on fork.
Is it sound to allow duplicating two?

let (81,82) = fork(((’,1,(’,2),?\(£1,€2).) in ---

10/17

From Ajei t0 Aokt

In Aok, we can duplicate one lock on fork.
Is it sound to allow duplicating two?

let (£1,£2) = fork(((’,1,(’,2),?\(£1,£2).) in ---

No, because
» Deadlock: acquiring (¢; then {,) in parallel with ({, then ¢;)
» Leak: storing (¢; into {,) in parallel with ({, into ¢;)

10/17

From Ajei t0 Aokt

In Aok, we can duplicate one lock on fork.
Is it sound to allow duplicating two?

let (£1,£2) = fork(((’,1,(’,2),?\(£1,£2).) in ---

No, because
» Deadlock: acquiring (¢; then {,) in parallel with ({, then ¢;)
» Leak: storing (¢; into {,) in parallel with ({, into ¢;)

Yes, if
» We make acquire and wait follow a lock order

» We prevent storing those locks inside each other

10/17

Alock+s 'S lock group type

<T1ta)11 500y Tngz>

» We can only acquire and wait in the given order
» We can add and remove locks dynamically
» The type level list is a local view into a complete order.

11/17

Alock++ 'S lock group API

newgroup: 1 —o ()
dropgroup : () —o 1

newlk]: (A, B) —o (A1}, B) (length(A) = k)
droplk] : (A, 19, B) —o (A, B)
releaselk] : (A, 15, B) x T —o (A, 1§, B)

acquirelk] : (A, g, By) —o (A, 15,Bo) x T
waitlk] : (Ag, 70, Bj) —o (Ap, By) x T

fork : (A) x ((B) —0 1) —o (C)
(Where A=B® C)

12/17

Swap within a lock group

swap : (intd, intd) —o (int3, int3)
swap({) :=

let {,x = acquire[0]({) i

let {,y = acquire[1]({) i

let { = release[0](¢,y) i

J(€ x) i

in
in
in
let { = releasel1 in

¢

> Type system enforces an order within a group

> No restrictions between two groups
(Partial lock orders don’t allow this!)

13/17

Dijkstra’s dining philosophers

Lock groups allow Ajcs to have cyclic connectivity

» Example: Dijkstra’s Dining Philosophers
> Every thread (Philosopher)
has access to 2 locks (forks): (forkZ, fork2,)

» Can grow the dining table dynamically
(fractally growing example in the paper)

14 /17

Leak and deadlock freedom theorem

Small-step semantics on config p = {Xj, .., X,} of threads & locks

X € pwaits for Y € pif
» X is a thread attempting an operation on lock Y, or
» Y has a reference to lock X

15/17

Leak and deadlock freedom theorem

Small-step semantics on config p = {Xj, .., X,} of threads & locks

X € pwaits for Y € p if
» X is a thread attempting an operation on lock Y, or

» Y has a reference to lock X

X € p is reachable if it transitively waits for Y € p that can step

S C pis adeadlock if no X € S can step or waits for Y ¢ S

15/17

Leak and deadlock freedom theorem

Small-step semantics on config p = {Xj, .., X,} of threads & locks

X € pwaits for Y € pif
» X is a thread attempting an operation on lock Y, or
» Y has a reference to lock X

X € p is reachable if it transitively waits for Y € p that can step
S C pis adeadlock if no X € S can step or waits for Y ¢ S
Theorem: all X € p reachable < no deadlocks) € S C p

Theorem: well-typed programs are leak and deadlock free

Corollary: global progress: p #) — p steps
v/ in Coq (= 13k loc)

Insight: leak and deadlock freedom are related

15/17

Related and future work (non-exhaustive)

Related work
» CLASS — Rocha and Caires (ICFP’21, ESOP’23)
Client-server sessions — Qian, Kavvos, Birkedal (ICFP’21)

Usages/obligations — Kobayashi et al. (see paper)

Manifest sharing — Balzer et al. (ICFP’17,ESOP’19)

>
>
» Priorities — Padovani, Dharda et al. (see paper)
>
> Session types — (see paper)

Future work
» DAG-shaped mutable data structures / Rc<RefCell<T>>
> Integration with Rust features (borrowing & unsafe)

16 /17

Rust is a practical memory-safe language without GC v/

Can a practical language be leak and deadlock free?]

I hope to have convinced you that:

» This might be possible & is worth trying
» Promising direction: single ownership — sharing topology

17 /17

Rust is a practical memory-safe language without GC v/

Can a practical language be leak and deadlock free?]

I hope to have convinced you that:

» This might be possible & is worth trying

» Promising direction: single ownership — sharing topology

“The authors didn’t even have to hide a bunch of more
complicated rules in an appendix.” — Reviewer A

(P.S. I'm looking for a postdoc position)

17 /17

