Paradoxes of Probabilistic Programming (POPL'21) and deleted scenes (VeriProP'21)

Jules Jacobs

Radboud University Nijmegen
julesjacobs@gmail.com

These slides: julesjacobs.com/slides/veriprop2021.pdf

Probabilistic programming

Example:

- A scientist randomly selects a man and a woman and measures their height
- The woman's height $h \sim \operatorname{Normal}(1.7,0.5)$ meters
- The man's height $h^{\prime} \sim \operatorname{Normal}(1.8,0.5)$ meters

Question: What's the expectation of h conditioned on $h^{\prime}=h$?

Probabilistic programming

Example:

- A scientist randomly selects a man and a woman and measures their height
- The woman's height $h \sim \operatorname{Normal}(1.7,0.5)$ meters
- The man's height $h^{\prime} \sim \operatorname{Normal}(1.8,0.5)$ meters

Question: What's the expectation of h conditioned on $h^{\prime}=h$?

```
function meters(){
    h = rand(Normal(1.7, 0.5))
    observe(Normal(1.8, 0.5), h)
    return h
}
samples = run(meters, 1000)
estimate = average(samples)
```

Answer: ≈ 1.75

Probabilistic programming

Example:

- A scientist randomly selects a man and a woman and measures their height
- The woman's height $h \sim \operatorname{Normal}(1.7,0.5)$ meters
- The man's height $h^{\prime} \sim \operatorname{Normal}(1.8,0.5)$ meters

Question: What's the expectation of h conditioned on $h^{\prime}=h$?

```
function meters(){
    h = rand(Normal(1.7, 0.5))
    observe(Normal(1.8, 0.5), h)
    return h
}
samples = run(meters, 1000)
estimate = average(samples)
```

```
function centimeters(){
    h = rand(Normal (170, 50))
    observe(Normal(180, 50), h)
    return h
}
samples = run(centimeters, 1000)
estimate = average(samples)
```

Answer: ≈ 1.75
Answer: ≈ 175

Paradox

```
h = rand(Normal(1.7, 0.5))
w = rand(Normal(60, 10))
if(flip(0.5)){
    observe(Normal(1.8, 0.5), h)
}else{
    observe(Normal(70, 10), w)
}
return h
```

Answer: ≈ 1.75

Paradox

```
h = rand(Normal(1.7, 0.5))
w = rand(Normal(60, 10))
if(flip(0.5)){
    observe(Normal(1.8, 0.5), h)
}else{
    observe(Normal(70, 10), w)
}
return h
```

Answer: ≈ 1.75

```
h = rand(Normal (170, 50))
W = rand(Normal (60, 10))
if(flip(0.5)){
    observe(Normal(180, 50), h)
}else{
    observe(Normal(70, 10), w)
}
return h
Answer: \approx 170
```


Paradox

```
h = rand(Normal(1.7, 0.5))
w = rand(Normal (60, 10))
if(flip(0.5)){
    observe(Normal(1.8, 0.5), h)
}else{
    observe(Normal(70, 10), w)
}
return h
Answer: \(\approx 1.75\)
```

```
h = rand(Normal (170, 50))
```

h = rand(Normal (170, 50))

```
w = rand(Normal (60, 10))
```

w = rand(Normal (60, 10))
if(flip(0.5)){
if(flip(0.5)){
observe(Normal(180, 50), h)
observe(Normal(180, 50), h)
}else{
}else{
observe(Normal(70, 10), w)
observe(Normal(70, 10), w)
}
}
return h
return h
Answer: \approx 170

```
Answer: \approx 170
```

- The output depends on whether we use meters or centimeters
- Happens in implementations as well as in formal operational semantics
- Similar behaviour in programs without conditionals too (Borel-Komolgorov paradox)

Problem:

- Probabilistic programs are not invariant under parameter transformations
- It's not clear what observe really means

Problem:

- Probabilistic programs are not invariant under parameter transformations
- It's not clear what observe really means

Key ideas:

1. Determine what observe should mean by looking at positive measure conditioning
2. Change the language: observe conditions on intervals instead of points: observe(Normal(1.8, 0.5), Interval(h, 0.1))
3. Parameterize the program by eps:
function foo(eps)\{
... observe(Normal (1.8, 0.5), Interval(h, eps)) ... \}
4. Take the limit eps $\rightarrow 0$.
5. Use symbolic infinitesimal arithmetic to compute the limit.

Paradox revisited

```
A = 2.3 // meters B = 42.6 // kilograms
function foo(eps){
    h = rand(Normal(1.7, 0.5)) // meters
    w = rand(Normal(60, 10)) // kilograms
    if(flip(0.5)){
        observe(Normal(1.8, 0.5), Interval(h,A*eps))
    }else{
        observe(Normal(70, 10), Interval(w,B*eps))
    }
    return h
}
```


Paradox revisited

```
A = 2.3 // meters B = 42.6 // kilograms
function foo(eps){
    h = rand(Normal(1.7, 0.5)) // meters
    w = rand(Normal (60, 10)) // kilograms
    if(flip(0.5)){
        observe(Normal(1.8, 0.5), Interval(h,A*eps))
    }else{
        observe(Normal(70, 10), Interval(w,B*eps))
    }
    return h
}
```

- Assume rejection sampling as "gold standard" semantics (works because width >0) $\operatorname{observe}(\mathrm{D}, \operatorname{Interval}(\mathrm{x}, \mathrm{w})) \triangleq$ reject if random $(\mathrm{D}) \notin[x-w, x+w]$
- Try foo(0.1); foo(0.01); foo(0.001) for different values of A and B
- The relative size of A and B matters, even as eps $\rightarrow 0$
- Change of units of h and w requires corresponding change in interval width A and B

Non-linear parameter transformations

- The problem is more general than units and conditionals
- The general issue is invariance under parameter transformations
- Changes of units $=$ linear parameter transformations produces paradoxes in combination with conditionals
- General case: non-linear parameter transformations (e.g. log-transform) produces paradoxes even without conditionals (e.g. Borel-Komolgorov paradox)
- See paper "Paradoxes of probabilistic programming" for details (https://julesjacobs.com/pdf/paradoxes.pdf)

Implementation

- Semantics: rejection sampling observe (D, I) \triangleq reject if random(D) $\notin I$
- Implementation: likelihood weighting
observe $(D, I) \triangleq\{$ weight $*=P(D, I)\}$ where $P(D, I) \triangleq \mathbb{P}(\operatorname{random}(D) \in I)$.
- The interval I can depend on eps to compute lim eps $\rightarrow 0$ exactly, do arithmetic with $\mathbb{R}_{\epsilon} \triangleq\left\{a \epsilon^{n} \mid a \in \mathbb{R}, n \in \mathbb{Z}\right\}$
- Similar to automatic differentiation with dual numbers
- Dual numbers: $a+b \epsilon$ where $\epsilon^{2}=0$
- Infinitesimal probabilities: $a \epsilon^{n}$ where $1+\epsilon=1$

Implementation

- Semantics: rejection sampling observe (D, I) \triangleq reject if random (D) $\notin I$
- Implementation: likelihood weighting observe (D, I) $\triangleq\{$ weight $*=P(D, I)\}$ where $P(D, I) \triangleq \mathbb{P}(\operatorname{random}(D) \in I)$.
- The interval I can depend on eps to compute lim eps $\rightarrow 0$ exactly, do arithmetic with $\mathbb{R}_{\epsilon} \triangleq\left\{a \epsilon^{n} \mid a \in \mathbb{R}, n \in \mathbb{Z}\right\}$
- Similar to automatic differentiation with dual numbers
- Dual numbers: $a+b \epsilon$ where $\epsilon^{2}=0$
- Infinitesimal probabilities: $a \epsilon^{n}$ where $1+\epsilon=1$

Result:

- This observe is invariant under arbitrary parameter transformations:

```
observe(f(D), f(I)) \equivobserve(D, I)
```

- Programs have clear probabilistic meaning via rejection sampling
- Can still condition on measure zero events
- Implemented as a DSL in Julia

Originally in the paper: Beyond intervals

```
We can let I in observe(D,I) be an arbitrary set
as long as we can compute P(D,I)\triangleq P}(\mathrm{ random(D) }\inI
e.g.
```


Originally in the paper: Beyond intervals

We can let I in observe(D, I) be an arbitrary set
as long as we can compute $P(D, I) \triangleq \mathbb{P}(\operatorname{random}(D) \in I)$
e.g.

- Union of intervals
- Finite set (if D is discrete)
- Regular language (if D is a Markov chain)
- General $I \subseteq \mathbb{R}^{n}$ for which we can approximate $\mathrm{P}(\mathrm{D}, \mathrm{I})$ (if D multivariate)
- e.g. ellipsoid $I_{\epsilon} \triangleq\left\{|A \vec{x}+b| \leq \epsilon \mid \vec{x} \in \mathbb{R}^{n}\right\}$
- We can compute $P\left(D, I_{\epsilon}\right)$ for infinitesimal ϵ in terms of the PDF of D
- For finite $\epsilon>0$ we may need numerical integration

Originally in the paper: Soft observations

Generalize further: use soft indicator function $f: \Omega \rightarrow[0,1]$ instead of hard sets

- $f(x) \triangleq$ probability of accepting x
- Semantics: observe(D,f) \triangleq reject if flip $(f(\operatorname{random}(D)))==$ false

Originally in the paper: Soft observations

Generalize further: use soft indicator function $f: \Omega \rightarrow[0,1]$ instead of hard sets

- $f(x) \triangleq$ probability of accepting x
- Semantics: observe(D,f) \triangleq reject if flip $(f(\operatorname{random}(D)))==$ false
- Implementation: observe $(\mathrm{D}, \mathrm{f}) \triangleq\{$ weight $*=W(\mathrm{D}, \mathrm{f})\}$ where $W(D, f) \triangleq \int f(x) d \mathbb{P}(D)$
- e.g if f is piecewise constant, and we have a CDF for D, then we can compute $W(D, f)$
- Such f specifies the rejection probability for each piecewise constant region

Originally in the paper: Soft observations

Generalize further: use soft indicator function $f: \Omega \rightarrow[0,1]$ instead of hard sets

- $f(x) \triangleq$ probability of accepting x
- Semantics: observe(D,f) \triangleq reject if flip $(f(r a n d o m(D)))==$ false
- Implementation: observe(D,f) $\triangleq\{$ weight $*=W(D, f)\}$ where $W(D, f) \triangleq \int f(x) d \mathbb{P}(D)$
- e.g if f is piecewise constant, and we have a CDF for D, then we can compute $W(D, f)$
- Such f specifies the rejection probability for each piecewise constant region
- Note: f is not a probability density function.
- Probability density functions integrate to 1
- Soft observation functions return a probability (possibly infinitesimal)
- The PDF of the normal distribution is not a soft indicator function, but $\sin (x)^{2}$ is

Originally in the paper: Events

Generalize further: use observe(D) where $\mathrm{D}=\operatorname{Bernoulli}(p)$

- Semantics: observe(Bernoulli(p)) \triangleq reject if $f l i p(p)==$ false
- Implementation: observe(Bernoulli(p)) $\triangleq\{$ weight $*=p$ \}
- We view Bernoulli (p) as a "random boolean" and we observe that the boolean is true
- Probability p is allowed to be infinitesimal

Originally in the paper: Events

Generalize further: use observe(D) where $\mathrm{D}=\operatorname{Bernoulli}(p)$

- Semantics: observe(Bernoulli(p)) $\triangleq ~ r e j e c t ~ i f ~ f l i p ~(p) ~==~ f a l s e ~$
- Implementation: observe(Bernoulli(p)) $\triangleq\{$ weight $*=p$ \}
- We view Bernoulli (p) as a "random boolean" and we observe that the boolean is true
- Probability p is allowed to be infinitesimal
- Define within (D, I) $\triangleq \operatorname{Bernoulli}(\mathbb{P}(\operatorname{random}(D) \in I))$
- Recovers observe(D,I) as observe(within(D,I))

Originally in the paper: Events

Generalize further: use observe(D) where $\mathrm{D}=\operatorname{Bernoulli}(p)$

- Semantics: observe(Bernoulli(p)) $\triangleq ~ r e j e c t ~ i f ~ f l i p(p) ~==~ f a l s e ~$
- Implementation: observe(Bernoulli(p)) 气 \{ weight *= p \}
- We view Bernoulli (p) as a "random boolean" and we observe that the boolean is true
- Probability p is allowed to be infinitesimal
- Define within $(D, I) \triangleq \operatorname{Bernoulli}(\mathbb{P}(\operatorname{random}(D) \in I))$
- Recovers observe(D,I) as observe(within(D,I))
- Boolean operations on Bernoulli's:

```
E1 = within(D1,I1)
E2 = within(D2,I2)
observe(or(E1,not(E2)))
```

- Rejection sampling semantics:

```
if(!(random(D1) in I1 || random(D2) notin I2)){ reject(); }
```


Correctness of probabilistic programming

- Which correctness criterion do we want?
- Even if the implementation matches the semantics, maybe the semantics still has surprising behaviour!
- My view here
- Rejection sampling as gold standard semantics
- Use explicit limits to express measure zero conditioning
- Correctness criterion:
- Optimized semantics (e.g. likelihood weighting + importance sampling) is equivalent to rejection sampling for $\epsilon \in \mathbb{R}_{>0}$
- Limit is computed correctly:
executing foo (ϵ) on symbolic ϵ gives the same result as $\lim _{x \rightarrow 0}$ foo (x)
- Can we prove all this in e.g. Coq?
- Other correctness criteria?

Comments or questions?

julesjacobs@gmail.com

These slides: julesjacobs.com/slides/veriprop2021.pdf

Acknowledgements I thank Sriram Sankaranarayanan and the anonymous POPL reviewers for their outstanding feedback. I'm grateful to Ike Mulder, Arjen Rouvoet, Paolo Giarrusso, Dongho Lee, Ahmad Salim Al-Sibahi, Sam Staton, Christian Weilbach, Johannes Borgström, Alex Lew, and Robbert Krebbers for help, inspiration, and discussions.

